Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 147 results
Advanced filters: Author: Justin M. Roberts Clear advanced filters
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • Tissue-resident macrophages (TRM) are important mediators of local immunity. Here the authors show that the deficiency or inhibition of a kinase, WNK1, unlinks macrophage colony-stimulating factor signaling and resulted macropinocytosis with the downstream, potentially IRF8-mediated genetic program to bias progenitor differentiation to neutrophil instead of TRM.

    • Alissa J. Trzeciak
    • Zong-Lin Liu
    • Justin S. A. Perry
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • Bacteria of the phylum Bacteroidota move by gliding and export proteins using a type-9 secretion system. Here, Liu et al. show that these two processes use a shared mechanism in which outer membrane proteins are covalently attached by disulfide bonds to a moving track structure inside the cell.

    • Xiaolong Liu
    • Marieta Avramova
    • Ben C. Berks
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A study of retrotransposon activity repurposes a retroelement called R2Tocc to create a programmable system called STITCHR that enables diverse genome edits including efficient, scarless large payload insertions.

    • Christopher W. Fell
    • Lukas Villiger
    • Jonathan S. Gootenberg
    Research
    Nature
    Volume: 642, P: 1080-1089
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this Stage 2 Registered Report, Buchanan et al. show evidence confirming the phenomenon of semantic priming across speakers of 19 diverse languages.

    • Erin M. Buchanan
    • Kelly Cuccolo
    • Savannah C. Lewis
    Research
    Nature Human Behaviour
    Volume: 10, P: 182-201
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • mmBCFAs are endogenous fatty acids synthesized from BCAAs by brown and white adipose tissue via CrAT and FASN promiscuity. BCAA catabolism and mmBCFA lipogenesis are decreased by obesity-induced adipose hypoxia and influenced by the microbiome.

    • Martina Wallace
    • Courtney R. Green
    • Christian M. Metallo
    Research
    Nature Chemical Biology
    Volume: 14, P: 1021-1031
  • Alteration of the epigenetic landscape has been implicated in several disease processes, where targeting histone modifiers may have therapeutic applications. Here the authors report a bifunctional small molecule inhibitor that simultaneously targets the deacetylase (HDAC1) and demethylase (LSD1) activities of the CoREST complex.

    • Jay H. Kalin
    • Muzhou Wu
    • Philip A. Cole
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-13
  • Delivering functional proteins or protein complexes into cells continues to be a significant challenge. Here, the authors develop efficient systems by using engineered extracellular vesicles to deliver functional cargoes, including CRISPR/Cas9-ribonucleoproteins, both in vitro and in vivo.

    • Xiuming Liang
    • Dhanu Gupta
    • Samir EL Andaloussi
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Mapping of groundwater-dependent ecosystems, which support biodiversity and rural livelihoods, shows they occur on more than one-third of global drylands analysed, but lack protections to safeguard these critical ecosystems and the societies dependent upon them from groundwater depletion.

    • Melissa M. Rohde
    • Christine M. Albano
    • John C. Stella
    ResearchOpen Access
    Nature
    Volume: 632, P: 101-107
  • 8-oxoG is a common single-base DNA lesion caused by oxidative stress. Here, authors characterize the mutational signature of potassium bromate (KBrO3) exposure, the chromatin structural determinants of 8-oxoG-induced mutation and the mechanisms involved in the repair of KBrO3-induced 8-oxoG.

    • Cameron Cordero
    • Kavi P. M. Mehta
    • Steven A. Roberts
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
  • Top predators may indirectly influence ecological processes through fear-induced behavioural changes in their prey. By experimentally manipulating this ‘landscape of fear’, Suraci et al. show that fear of large carnivores in a mesopredator can cause cascading effects down the food web that benefit its prey.

    • Justin P. Suraci
    • Michael Clinchy
    • Liana Y. Zanette
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • COVID-19 can be associated with neurological complications. Here the authors show that markers of brain injury, but not immune markers, are elevated in the blood of patients with COVID-19 both early and months after SARS-CoV-2 infection, particularly in those with brain dysfunction or neurological diagnoses.

    • Benedict D. Michael
    • Cordelia Dunai
    • David K. Menon
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • The dTAG system pairs potent heterobifunctional degraders and extensible tagging strategies to achieve immediate and reversible degradation of divergent proteins, facilitating biological investigation and drug target validation in cells and in mice.

    • Behnam Nabet
    • Justin M. Roberts
    • James E. Bradner
    Research
    Nature Chemical Biology
    Volume: 14, P: 431-441
  • Targeting the acetyllysine ‘reader’ activity of BET family transcriptional coactivators has emerged as an anticancer modality. A new class of dimeric JQ1 derivatives displays enhanced potency for bivalent targeting of tandem bromodomains in BET proteins.

    • Minoru Tanaka
    • Justin M Roberts
    • James E Bradner
    Research
    Nature Chemical Biology
    Volume: 12, P: 1089-1096
  • A comprehensive multi-omics reference atlas of prenatal human skin shows that innate immune cells crosstalk with non-immune cells to perform pivotal roles in skin morphogenesis, including the formation of hair follicles.

    • Nusayhah Hudaa Gopee
    • Elena Winheim
    • Muzlifah Haniffa
    ResearchOpen Access
    Nature
    Volume: 635, P: 679-689
  • A single-cell atlas of human fetal bone marrow in healthy fetuses and fetuses with Down syndrome provides insight into developmental haematopoiesis in humans and the transcription and functional differences that occur in Down syndrome.

    • Laura Jardine
    • Simone Webb
    • Muzlifah Haniffa
    Research
    Nature
    Volume: 598, P: 327-331
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926