Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 141 results
Advanced filters: Author: Kuan Shen Clear advanced filters
  • The Taiwan Precision Medicine Initiative recruited and genotyped more than half a million Taiwanese participants, almost all of Han Chinese ancestry, and performed comprehensive genomic analyses and developed polygenic risk score prediction models for numerous health conditions.

    • Hung-Hsin Chen
    • Chien-Hsiun Chen
    • Cathy S. J. Fann
    ResearchOpen Access
    Nature
    Volume: 648, P: 128-137
  • The authors report a meta-analysis of methylome-wide association studies, identifying 15 significant CpG sites linked to major depression, revealing associations with inflammatory markers and suggesting potential causal relationships through Mendelian randomization analysis.

    • Xueyi Shen
    • Miruna Barbu
    • Andrew M. McIntosh
    ResearchOpen Access
    Nature Mental Health
    Volume: 3, P: 1152-1167
  • Genome-wide association studies (GWAS) have improved our understanding of the genetic basis of lung adenocarcinoma but known susceptibility variants explain only a small fraction of the familial risk. Here, the authors perform a two-stage GWAS and report 12 novel genetic loci associated with lung adenocarcinoma in East Asians.

    • Jianxin Shi
    • Kouya Shiraishi
    • Qing Lan
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Gut microbiota has been reported to influence osteoporosis risk, but the individual species, and underlying mechanisms, remain largely unknown. Here, the authors identify Bacteroides vulgatus and serum valeric acid as potential targets for osteoporosis prevention/treatment.

    • Xu Lin
    • Hong-Mei Xiao
    • Hong-Wen Deng
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • A large-scale photonic accelerator comprising more than 16,000 components integrated on a single chip to process MAC operations is described, demonstrating ultralow latency and reduced computing time compared with a commercially available GPU.

    • Shiyue Hua
    • Erwan Divita
    • Yichen Shen
    ResearchOpen Access
    Nature
    Volume: 640, P: 361-367
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The authors summarize the data produced by phase III of the Encyclopedia of DNA Elements (ENCODE) project, a resource for better understanding of the human and mouse genomes.

    • Federico Abascal
    • Reyes Acosta
    • Zhiping Weng
    ResearchOpen Access
    Nature
    Volume: 583, P: 699-710
  • Apiosides are plant bioactive natural products containing apiose, but the details of the key apiosylation reaction in their biosynthesis are missing. Here, the authors identify the apiosyltransferase GuApiGT that could efficiently catalyze 2″-O-apiosylation of flavonoid glycosides, solve its crystal structure and obtain mutants with altered sugar selectivity.

    • Hao-Tian Wang
    • Zi-Long Wang
    • Min Ye
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-16
  • Multi-qubit entangling gates are realized by simultaneously driving multiple motional modes of a linear chain of trapped ions with modulated external fields, achieving a fidelity of about 93 per cent with four qubits.

    • Yao Lu
    • Shuaining Zhang
    • Kihwan Kim
    Research
    Nature
    Volume: 572, P: 363-367
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • A genomic map of nearly 300,000 potential cis-regulatory sequences determined from diverse mouse tissues and cell types reveals active promoters, enhancers and CCCTC-binding factor sites encompassing 11% of the mouse genome and significantly expands annotation of mammalian regulatory sequences.

    • Yin Shen
    • Feng Yue
    • Bing Ren
    Research
    Nature
    Volume: 488, P: 116-120
  • Over the last few years, several van der Waals materials have been found that retain magnetic ordering down to monolayer thickness. These materials provide a simple platform for studying the magnetism in reduced dimensions. Here, Zhong et al study the thickness dependence of magnetic ordering in Cr2Te3, and find a crossover from Stoner to Heisenberg-type magnetism as thicknesses are reduced.

    • Yong Zhong
    • Cheng Peng
    • Zhi-Xun Shen
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-7
  • Using mouse lines in which subsets of neurons are genetically labelled, the authors provide generalized anatomical rules for connections within and between the cortex and thalamus.

    • Julie A. Harris
    • Stefan Mihalas
    • Hongkui Zeng
    Research
    Nature
    Volume: 575, P: 195-202
  • Modern computation relies on modular architectures, breaking a complex algorithm into self-contained subroutines, whereas current quantum computers do not have such capability. Here, the authors provide an experimental demonstration of a modular quantum computation protocol using a trapped Yb ion.

    • Kuan Zhang
    • Jayne Thompson
    • Kihwan Kim
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • A spatially resolved transcriptional atlas of the mid-gestational developing human brain has been created using laser-capture microdissection and microarray technology, providing a comprehensive reference resource which also enables new hypotheses about the nature of human brain evolution and the origins of neurodevelopmental disorders.

    • Jeremy A. Miller
    • Song-Lin Ding
    • Ed S. Lein
    Research
    Nature
    Volume: 508, P: 199-206
  • Simulation of quantum field theory using quantum systems would in principle allow avoidance of the exponential overhead required for classical simulations. Here, the authors use a multilevel trapped ion to simulate the processes of self-interaction and particle-antiparticle creation/annihilation.

    • Xiang Zhang
    • Kuan Zhang
    • Kihwan Kim
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • Wilms tumor gene on the X chromosome (WTX) is commonly downregulated in human cancers. Here the authors show that in colorectal cancer (CRC) WTX expression is downregulated via miR20a and miR160a and its loss promotes tumor development and liver metastasis by disrupting the interaction between RhoGDIα and CDC42 leading to the activation of the CDC42 downstream cascades.

    • Gui-fang Zhu
    • Yang-wei Xu
    • Qing-ling Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-14
  • The Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types; these data were compared with those from human to confirm substantial conservation in the newly annotated potential functional sequences and to reveal pronounced divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization.

    • Feng Yue
    • Yong Cheng
    • Bing Ren
    ResearchOpen Access
    Nature
    Volume: 515, P: 355-364