Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Evolutionary repurposing of a metabolic thiolase complex enables antibiotic biosynthesis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

Evolutionary repurposing of a metabolic thiolase complex enables antibiotic biosynthesis

  • Ge Liao  (廖格)1 na1,
  • Ruolan Sun  (孙若兰)1,2,3 na1,
  • Zilin Shen  (沈子琳)4,5 na1,
  • Zhiteng Luo  (罗志腾)4,
  • Cuiping Pang  (庞翠萍)6,
  • Zhuanglin Shen  (谌庄琳)  ORCID: orcid.org/0000-0003-3172-68356,
  • Anfu Wei  (韦安福)1,7,
  • Chengneng Mi  (米承能)8,
  • Gengfan Wu  (吴耿帆)9,
  • Fengfang Li  (李枫芳)1,
  • Yong-Xin Li  (李泳新)  ORCID: orcid.org/0000-0003-4422-23029,
  • Kin Kuan HOI  (许建坤)  ORCID: orcid.org/0000-0002-9768-82991,
  • Xiaojing Pan  (潘孝敬)  ORCID: orcid.org/0000-0003-1882-53614 &
  • …
  • Xiaoyu Tang  (唐啸宇)  ORCID: orcid.org/0000-0002-6406-98701,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacterial synthetic biology
  • Cryoelectron microscopy
  • Molecular evolution
  • Multienzyme complexes

Abstract

The functional diversification of biosynthetic enzymes underlies the chemical richness of natural products, yet how primary metabolic enzymes evolve to acquire specialized functions in secondary metabolism remains elusive. Here, we report a tripartite enzyme complex from oral Streptococcus species—comprising 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGS), acetyl-CoA acetyltransferase (ACAT), and a DUF35 protein—that catalyzes an unusual Friedel–Crafts C-acetylation on a pyrrolidine-2,4-dione scaffold, completing the biosynthesis of the antibiotic reutericyclin A. Cryo-electron microscopy of the S. macacae-derived thiolase complex (SmaATase) reveals a conserved architecture resembling the archaeal HMGS/ACAT/DUF35 complex involved in the mevalonate pathway, yet with key catalytic residues rewired to reprogram substrate specificity. Biochemical characterization, molecular modeling, and evolutionary analysis confirmed that the ancestral activity of HMG-CoA synthesis has been lost, while the complex has been repurposed to mediate Friedel–Crafts C-acylation of small molecule acceptors. These findings reveal a rare example of thiolase complex neofunctionalization, shedding light on an underexplored trajectory in enzyme evolution and offering a template for engineering C–C bond-forming catalysts in synthetic biology.

Data availability

Data supporting the findings of this work are available within the paper and its Supplementary Information files. The cryo-EM structures and corresponding density maps are available in the Protein Data Bank under accession codes 9VBO (MucA4B2C2) and 9VBT (MucA4B4C4), and in the Electron Microscopy Data Bank database under accession codes EMD-64929 (MucA4B2C2) and EMD-64933 (MucA4B4C4). The crystal structures of PpATase (5MG5) and the archaeal HMGS/ACAT/DUF35 complex (6ESQ) were used in this study for structural comparison. The protein mass spectrometry data have been deposited to the ProteomeXchange Consortium via the iProX72,73 partner repository with the dataset identifier PXD072906. MD simulation files, including the initial and final coordinates along with the parameter files, are deposited in the Figshare repository https://doi.org/10.6084/m9.figshare.30646505. Source data are provided with this paper.

References

  1. Wang, Y., Shi, Y. N., Xiang, H. & Shi, Y. M. Exploring nature’s battlefield: organismic interactions in the discovery of bioactive natural products. Nat. Prod. Rep. 41, 1630–1651 (2024).

    Google Scholar 

  2. Chevrette, M. G. et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat. Prod. Rep. 37, 566–599 (2020).

    Google Scholar 

  3. Moghe, G. & Last, R. L. Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiol. 169, 1512–1523 (2015).

    Google Scholar 

  4. Jenke-Kodama, H., Müller, R. & Dittmann, E. Evolutionary mechanisms underlying secondary metabolite diversity. Prog. Drug Res. 65, 121–140 (2008).

    Google Scholar 

  5. Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    Google Scholar 

  6. Ngaki, M. N. et al. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485, 530–533 (2012).

    Google Scholar 

  7. Kaltenbach, M. et al. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat. Chem. Biol. 14, 548–555 (2018).

    Google Scholar 

  8. Miller, M., Bachmann, B., Townsend, C. & Rosenzweig, A. C. Structure of β-lactam synthetase reveals how to synthesize antibiotics instead of asparagine. Nat. Struct. Mol. Biol. 8, 684–689 (2001).

    Google Scholar 

  9. Tahlan, K. & Jensen, S. E. Origins of the β-lactam rings in natural products. J. Antibiot. 66, 401–410 (2013).

    Google Scholar 

  10. Harijan, R. K., Dalwani, S., Kiema, T.-R., Venkatesan, R. & Wierenga, R. K. Thiolase: a versatile biocatalyst employing coenzyme A–thioester chemistry for making and breaking C–C bonds. Annu. Rev. Biochem. 92, 351–384 (2023).

    Google Scholar 

  11. Haapalainen, A. M., Meriläinen, G. & Wierenga, R. K. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem. Sci. 31, 64–71 (2006).

    Google Scholar 

  12. Kunau, W. H., Dommes, V. & Schulz, H. β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog. Lipid Res. 34, 267–342 (1995).

    Google Scholar 

  13. Heath, R. J. & Rock, C. O. The Claisen condensation in biology. Nat. Prod. Rep. 19, 581–596 (2002).

    Google Scholar 

  14. Vögeli, B. et al. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proc. Natl. Acad. Sci. USA 115, 3380–3385 (2018).

    Google Scholar 

  15. Tang, X. et al. Cariogenic Streptococcus mutans produces tetramic acid strain-specific antibiotics that impair commensal colonization. ACS Infect. Dis. 6, 563–571 (2020).

    Google Scholar 

  16. Zhang, Y. et al. Human-associated bacteria adopt an unusual route for synthesizing 3-acetylated tetramates for environmental adaptation. Microbiome 11, 97–112 (2023).

    Google Scholar 

  17. Hao, T. et al. An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. Nat. Commun. 10, 3665–3677 (2019).

    Google Scholar 

  18. Hayashi, A. et al. Molecular and catalytic properties of monoacetylphloroglucinol acetyltransferase from Pseudomonas sp. YGJ3. Biosci. Biotech. Bioch. 76, 559–566 (2012).

    Google Scholar 

  19. Schmidt, N. G. et al. Biocatalytic Friedel-Crafts acylation and Fries reaction. Angew. Chem. Int. Ed. 56, 7615–7619 (2017).

    Google Scholar 

  20. Pavkov-Keller, T., Schmidt, N. G., Żądło-Dobrowolska, A., Kroutil, W. & Gruber, K. Structure and catalytic mechanism of a bacterial Friedel-Crafts acylase. ChemBioChem 20, 88–95 (2019).

    Google Scholar 

  21. Schmidt, N. G. & Kroutil, W. Acyl donors and additives for the biocatalytic Friedel-Crafts acylation. Eur. J. Org. Chem. 2017, 5865–5871 (2017).

    Google Scholar 

  22. Żądło-Dobrowolska, A., Schmidt, N. G. & Kroutil, W. Thioesters as acyl donors in biocatalytic Friedel-Crafts-type acylation catalyzed by acyltransferase from Pseudomonas protegens. ChemCatChem 11, 1064–1068 (2019).

    Google Scholar 

  23. Liu, J., Ng, T., Rui, Z., Ad, O. & Zhang, W. Unusual acetylation-dependent reaction cascade in the biosynthesis of the pyrroloindole drug physostigmine. Angew. Chem. Int. Ed. 53, 136–139 (2013).

    Google Scholar 

  24. Zhang, S. et al. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microb. Cell Fact. 2019, 130–140 (2019).

    Google Scholar 

  25. Sheng, X., Kazemi, M., Żądło-Dobrowolska, A., Kroutil, W. & Himo, F. Mechanism of biocatalytic Friedel-Crafts acylation by acyltransferase from Pseudomonas protegens. ACS Catal. 10, 570–577 (2020).

    Google Scholar 

  26. Tan, Z., Clomburg, J. M., Cheong, S., Qian, S. & Gonzalez, R. A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones. Nat. Catal. 3, 593–603 (2020).

    Google Scholar 

  27. Jiang, C., Kim, S. & Suh, D. Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol. Phylogenet. Evol. 49, 691–701 (2008).

    Google Scholar 

  28. Weidenweber, S. et al. Finis tolueni: a new type of thiolase with an integrated Zn-finger subunit catalyzes the final step of anaerobic toluene metabolism. FEBS J. 289, 5599–5616 (2022).

    Google Scholar 

  29. Żądło-Dobrowolska, A., Hammerer, L., Pavkov-Keller, T., Gruber, K. & Kroutil, W. Rational engineered C-acyltransferase transforms sterically demanding acyl donors. ACS Catal. 10, 1094–1101 (2019).

    Google Scholar 

  30. Gänzle, M. G. Reutericyclin: biological activity, mode of action, and potential applications. Appl. Microbiol. Biotechnol. 64, 326–332 (2004).

    Google Scholar 

  31. Cherian, P. T. et al. Chemical modulation of the biological activity of reutericyclin: a membrane-active antibiotic from Lactobacillus reuteri. Sci. Rep. 4, 4721–4729 (2014).

    Google Scholar 

  32. Kumar, V., Turnbull, W. B. & Kumar, A. Review on recent developments in biocatalysts for Friedel-Crafts reactions. ACS Catal. 12, 10742–10763 (2022).

    Google Scholar 

  33. Xia, Y. et al. Biosynthesis of 4-acyl-5-aminoimidazole alkaloids featuring a new Friedel-Crafts acyltransferase. J. Am. Chem. Soc. 145, 26308–26317 (2023).

    Google Scholar 

  34. Stacpoole, P. eterW. & McCall, C. E. The pyruvate dehydrogenase complex: Life’s essential, vulnerable and druggable energy homeostat. Mitochondrion 70, 59–102 (2023).

    Google Scholar 

  35. Chen, M. et al. Molecular architecture of mammalian pyruvate dehydrogenase complex. Protein Cell 16, 72–78 (2025).

    Google Scholar 

  36. Yang, L. et al. High resolution cryo-EM and crystallographic snapshots of the actinobacterial two-in-one 2-oxoglutarate dehydrogenase. Nat. Commun. 14, 4851–4865 (2023).

    Google Scholar 

  37. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008).

    Google Scholar 

  38. Cogan, D. P. et al. Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science 374, 729–734 (2021).

    Google Scholar 

  39. Pistofidis, A. et al. Structures and mechanism of condensation in non-ribosomal peptide synthesis. Nature 638, 270–278 (2024).

    Google Scholar 

  40. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32, 1011–1018 (2014).

    Google Scholar 

  41. Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016).

    Google Scholar 

  42. Noda-Garcia, L. & Tawfik, D. S. Enzyme evolution in natural products biosynthesis: target- or diversity-oriented? Curr. Opin. Chem. Biol. 59, 147–154 (2020).

    Google Scholar 

  43. Rezzonico, F. et al. Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol. 173, 861–872 (2006).

    Google Scholar 

  44. Gutiérrez-García, K. et al. Phylogenomics of 2,4-diacetylphloroglucinol-producing Pseudomonas and novel antiglycation endophytes from Piper auritum. J. Nat. Prod. 80, 1955–1963 (2017).

    Google Scholar 

  45. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  46. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Google Scholar 

  47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Google Scholar 

  48. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Google Scholar 

  49. Hoi, K. K. et al. Detergent-free lipodisq nanoparticles facilitate high-resolution mass spectrometry of folded integral membrane proteins. Nano. Lett. 21, 2824–2831 (2021).

    Google Scholar 

  50. Mistarz, U. H., Chandler, S. A., Brown, J. M., Benesch, J. L. P. & Rand, K. D. Probing the dissociation of protein complexes by means of gas-phase H/D exchange mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 45–57 (2019).

    Google Scholar 

  51. Wu, D. & Piszczek, G. Standard protocol for mass photometry experiments. Eur. Biophys. J. 50, 403–409 (2021).

    Google Scholar 

  52. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  53. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, 27–39 (2011).

    Google Scholar 

  54. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, 412–419 (2021).

    Google Scholar 

  55. Blin, K. et al. antiSMASH 8.0: extended gene cluster detection capabilities and analyses of chemistry, enzymology, and regulation. Nucleic Acids Res. 53, W32–W38 (2025).

    Google Scholar 

  56. Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

    Google Scholar 

  57. Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).

    Google Scholar 

  58. Corso, G., Deng, A., Polizzi, N., Barzilay, R. & Jaakkola, T. S. Deep confident steps to new pockets: strategies for docking generalization. International Conference on Learning Representations, 38463508 (2024).

  59. Yuan, S., Chan, H. C. S. & Hu, Z. Using PyMOL as a platform for computational drug design. WIREs Comput. Mol. Sci. 7, e1298 (2017).

    Google Scholar 

  60. Bouysset, C. & Fiorucci, S. ProLIF: a library to encode molecular interactions as fingerprints. J. Cheminf. 13, 72–80 (2021).

    Google Scholar 

  61. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Google Scholar 

  62. Páll, S. et al. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys 153, 134110 (2020).

    Google Scholar 

  63. Maier, J. A. et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Google Scholar 

  64. He, X., Man, V. H., Yang, W., Lee, T. S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 153, 114502 (2020).

    Google Scholar 

  65. Cornell, W. D., Cieplak, P., Bayly, C. I. & Kollman, P. A. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc. 115, 9620–9631 (1993).

    Google Scholar 

  66. Smith, D. G. A. et al. Psi4 1.4: open-source software for high-throughput quantum chemistry. J. Chem. Phys. 152, 184108 (2020).

    Google Scholar 

  67. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Google Scholar 

  68. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Google Scholar 

  69. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Google Scholar 

  70. Darden, T., York, D. & Pedersen, L. Particle mesh ewald: an N.Log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993).

    Google Scholar 

  71. Weng, G. et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein–peptide complexes. Phys. Chem. Chem. Phys. 21, 10135–10145 (2019).

    Google Scholar 

  72. Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217 (2019).

    Google Scholar 

  73. Chen, T. et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 50, D1522–D1527 (2022).

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (32401633 to G.L., 82173719 to X.T., and 32322039 to X.P.), Guangdong Basic and Applied Basic Research Foundation (2023A1515111192 to G.L. and 2024A1515010922 to X.T.), Guangdong S&T Program (2024B1111160007 to X.T.), Shenzhen Science and Technology Program (KJZD20240903101104007 to X.T.), Shenzhen Bay Laboratory Startup Fund (21230051 to X.T. and QH28001 to K.K.H.), and the Major Program of Shenzhen Bay Laboratory (C1012523006 and S211101001 to X.T.). The authors are grateful to T. Zheng and E. Li from the Multi-Omics Mass Spectrometry Core of Shenzhen Bay Laboratory for the help with IMS-TOF mass measurements, H.Yin and J.Zheng from Shenzhen Medical Academy of Research and Translation for the acquisition of Orbitrap mass spectrometry data, and K.Wang from Refeyn Co., Ltd. for the assistance with MP measurements. We thank L. Dai (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences) for providing S. salivarius DA547 and S. oralis DA1241.

Author information

Author notes
  1. These authors contributed equally: Ge Liao, Ruolan Sun, Zilin Shen.

Authors and Affiliations

  1. Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China

    Ge Liao  (廖格), Ruolan Sun  (孙若兰), Anfu Wei  (韦安福), Fengfang Li  (李枫芳), Kin Kuan HOI  (许建坤) & Xiaoyu Tang  (唐啸宇)

  2. Shenzhen Medical Academy of Research and Translation, Shenzhen, China

    Ruolan Sun  (孙若兰) & Xiaoyu Tang  (唐啸宇)

  3. Westlake University, Hangzhou, China

    Ruolan Sun  (孙若兰)

  4. Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen, China

    Zilin Shen  (沈子琳), Zhiteng Luo  (罗志腾) & Xiaojing Pan  (潘孝敬)

  5. Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China

    Zilin Shen  (沈子琳)

  6. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

    Cuiping Pang  (庞翠萍) & Zhuanglin Shen  (谌庄琳)

  7. College of Life Sciences, Northwest University, Xi’an, China

    Anfu Wei  (韦安福)

  8. College of Pharmacy, Xiangnan University, Chenzhou, China

    Chengneng Mi  (米承能)

  9. Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China

    Gengfan Wu  (吴耿帆) & Yong-Xin Li  (李泳新)

Authors
  1. Ge Liao  (廖格)
    View author publications

    Search author on:PubMed Google Scholar

  2. Ruolan Sun  (孙若兰)
    View author publications

    Search author on:PubMed Google Scholar

  3. Zilin Shen  (沈子琳)
    View author publications

    Search author on:PubMed Google Scholar

  4. Zhiteng Luo  (罗志腾)
    View author publications

    Search author on:PubMed Google Scholar

  5. Cuiping Pang  (庞翠萍)
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhuanglin Shen  (谌庄琳)
    View author publications

    Search author on:PubMed Google Scholar

  7. Anfu Wei  (韦安福)
    View author publications

    Search author on:PubMed Google Scholar

  8. Chengneng Mi  (米承能)
    View author publications

    Search author on:PubMed Google Scholar

  9. Gengfan Wu  (吴耿帆)
    View author publications

    Search author on:PubMed Google Scholar

  10. Fengfang Li  (李枫芳)
    View author publications

    Search author on:PubMed Google Scholar

  11. Yong-Xin Li  (李泳新)
    View author publications

    Search author on:PubMed Google Scholar

  12. Kin Kuan HOI  (许建坤)
    View author publications

    Search author on:PubMed Google Scholar

  13. Xiaojing Pan  (潘孝敬)
    View author publications

    Search author on:PubMed Google Scholar

  14. Xiaoyu Tang  (唐啸宇)
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.T. and G.L. conceived and designed the project. G.L., R.S., A.W., and C.P. conducted biochemical experiments, metabolic profiling, and antibacterial activity assays. Z.S. (Zilin Shen) and Z.L. acquired the cryo-EM data and performed structural modeling and refinement under the supervision of X.P., G.W. performed bioinformatic analyses and genome mining under the supervision of Y.-X.L., and F.L. carried out native mass spectrometry experiments under the supervision of K.K.H. Z.S. (Zhuanglin Shen) performed molecular docking and molecular dynamic simulations. C.M. executed chemical synthesis and compound isolation. G.L. and X.T. prepared the manuscript with input from all authors. X.T. supervised the project.

Corresponding authors

Correspondence to Kin Kuan HOI  (许建坤), Xiaojing Pan  (潘孝敬) or Xiaoyu Tang  (唐啸宇).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tristan Wagner, who co-reviewed with Federico Musso; Max Crüsemann; and Heidi Klem for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, G., Sun, R., Shen, Z. et al. Evolutionary repurposing of a metabolic thiolase complex enables antibiotic biosynthesis. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68910-6

Download citation

  • Received: 03 July 2025

  • Accepted: 20 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68910-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing