Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 172 results
Advanced filters: Author: Kyle H. Moore Clear advanced filters
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Inventory data from more than 1 million trees across African, Amazonian and Southeast Asian tropical forests suggests that, despite their high diversity, just 1,053 species, representing a consistent ~2.2% of tropical tree species in each region, constitute half of Earth’s 800 billion tropical trees.

    • Declan L. M. Cooper
    • Simon L. Lewis
    • Stanford Zent
    ResearchOpen Access
    Nature
    Volume: 625, P: 728-734
  • Much investment goes into improving police-community interactions, yet trust in police remains low. Here, the authors show that community members report feeling less threat and more trust when officers use transparency statements to start interactions.

    • Kyle S. H. Dobson
    • Andrea G. Dittmann
    • David S. Yeager
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • A global research network monitoring the Amazon for 30 years reports in this study that tree size increased by 3% each decade.

    • Adriane Esquivel-Muelbert
    • Rebecca Banbury Morgan
    • Oliver L. Phillips
    ResearchOpen Access
    Nature Plants
    Volume: 11, P: 2016-2025
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The authors report resonant soft x-ray scattering and polarimetry measurements on epitaxial thin films of La3Ni2O7. They find a diagonal bicollinear double spin stripe order, with no evidence of charge modulation.

    • Naman K. Gupta
    • Rantong Gong
    • David G. Hawthorn
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Wetland methane emissions contribute to global warming, and are oversimplified in climate models. Here the authors use eddy covariance measurements from 48 global sites to demonstrate seasonal hysteresis in methane-temperature relationships and suggest the importance of microbial processes.

    • Kuang-Yu Chang
    • William J. Riley
    • Donatella Zona
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-10
  • Wood density is a key control on tree biomass, and understanding its spatial variation improves estimates of forest carbon stock. Sullivan et al. measure >900 forest plots to quantify wood density and produce high resolution maps of its variation across South American tropical forests.

    • Martin J. P. Sullivan
    • Oliver L. Phillips
    • Joeri A. Zwerts
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • How the carbon stocks of the Arctic–Boreal Zone change with warming is not well understood. Here the authors show that wildfires and large regional differences in net carbon fluxes offset the overall increasing CO2 uptake.

    • Anna-Maria Virkkala
    • Brendan M. Rogers
    • Susan M. Natali
    ResearchOpen Access
    Nature Climate Change
    Volume: 15, P: 188-195
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Correlated materials can show nematicity, but the nematic state usually exhibits even-fold rotational symmetry. Now, a correlated antiferromagnet is shown to host a three-state Potts vestigial nematicity that can be controlled by external strain.

    • Kyle Hwangbo
    • Elliott Rosenberg
    • Xiaodong Xu
    Research
    Nature Physics
    Volume: 20, P: 1888-1895
  • Copper-containing proteins can be classified into types 1 and 2, depending on their functional or spectroscopic properties. Now, a protein that fits neither type has been built using a scaffold made from the protein Pseudomonas aeruginosa azurin.

    • Kyle M. Lancaster
    • Serena DeBeer George
    • Harry B. Gray
    Research
    Nature Chemistry
    Volume: 1, P: 711-715
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cell type labelling in single-cell datasets remains a major bottleneck. Here, the authors present AnnDictionary, an open-source toolkit that enables atlas-scale analysis and provides the first benchmark of LLMs for de novo cell type annotation from marker genes, showing high accuracy at low cost.

    • George Crowley
    • Robert C. Jones
    • Stephen R. Quake
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Dense calcium imaging combined with co-registered high-resolution electron microscopy reconstruction of the brain of the same mouse provide a functional connectomics map of tens of thousands of neurons of a region of the primary cortex and higher visual areas.

    • J. Alexander Bae
    • Mahaly Baptiste
    • Chi Zhang
    ResearchOpen Access
    Nature
    Volume: 640, P: 435-447
  • Data from a variety of sources—including satellite, climate and soil data, as well as field-collected information on plant traits—are pooled and analysed to map the functional diversity of tropical forest canopies globally.

    • Jesús Aguirre-Gutiérrez
    • Sami W. Rifai
    • Yadvinder Malhi
    ResearchOpen Access
    Nature
    Volume: 641, P: 129-136
  • The authors summarize the data produced by phase III of the Encyclopedia of DNA Elements (ENCODE) project, a resource for better understanding of the human and mouse genomes.

    • Federico Abascal
    • Reyes Acosta
    • Zhiping Weng
    ResearchOpen Access
    Nature
    Volume: 583, P: 699-710
  • Searches for metastable states with properties not found in thermal equilibrium have been restricted to either ultrafast or slow timescales. A metastable state in an intermediate time window has now been identified in a photo-doped Mott insulator.

    • Xinwei Li
    • Iliya Esin
    • David Hsieh
    Research
    Nature Physics
    Volume: 21, P: 451-457
  • Deflection is one of the options discussed for preventing catastrophic collisions of asteroids with Earth. Now, a megajoule-class X-ray pulse is used to simulate such scenarios, demonstrating that it is a viable strategy at higher interceptor energies.

    • Nathan W. Moore
    • Mikhail Mesh
    • Seth Root
    Research
    Nature Physics
    Volume: 20, P: 1833-1839
  • An innovative method using superconducting sensors precisely measures the recoil energy of lithium-7 nuclei, setting a lower limit on the spatial extent of neutrino wavepackets, advancing understanding of neutrino properties and weak nuclear decays.

    • Joseph Smolsky
    • Kyle G. Leach
    • William K. Warburton
    ResearchOpen Access
    Nature
    Volume: 638, P: 640-644
  • Metabolome-informed proteome imaging provides a comprehensive view of underlying biological pathways within micrometer-scale microhabitats of the fungal garden, informing the understanding of metabolic fungal pathways in plant matter degradation.

    • Marija Veličković
    • Ruonan Wu
    • Kristin E. Burnum-Johnson
    ResearchOpen Access
    Nature Chemical Biology
    Volume: 20, P: 1033-1043
  • Xenotransplantation in humans using pig organs could improve the transplant organ supply. Here the authors transplant pig kidneys into a brain-dead recipient and monitor the human immune cell response early after transplantation using spatial and single cell transcriptomics and show early myeloid cell infiltration.

    • Matthew D. Cheung
    • Rebecca Asiimwe
    • Paige M. Porrett
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • The identification of pathogenic mutations within prion-like domains (PrLDs) of the RNA-binding proteins hnRNPA2B1 and hnRNPA1 add to our understanding of how mutations in these proteins lead to degenerative disease, and highlight the potential importance of PrLDs in degenerative diseases of the nervous system, muscle and bone.

    • Hong Joo Kim
    • Nam Chul Kim
    • J. Paul Taylor
    Research
    Nature
    Volume: 495, P: 467-473
  • Analysing >1,700 inventory plots from the Amazon Tree Diversity Network, the authors show that the majority of Amazon tree species can occupy floodplains and that patterns of species turnover are closely linked to regional flood patterns.

    • John Ethan Householder
    • Florian Wittmann
    • Hans ter Steege
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 8, P: 901-911