Chen et al. demonstrate that large language models (LLMs) frequently prioritize agreement over accuracy when responding to illogical medical prompts, a behavior known as sycophancy. By reinforcing user assumptions, this tendency may amplify misinformation and bias in clinical contexts. The authors find that simple prompting strategies and LLM fine-tuning can markedly reduce sycophancy without impairing performance, highlighting a path toward safer, more trustworthy applications of LLMs in medicine.
- Kyra L. Rosen
- Margaret Sui
- Joseph C. Kvedar