Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 148 results
Advanced filters: Author: Lucinda Fulton Clear advanced filters
  • Large-effect variants in autism remain elusive. Here, the authors use long-read sequencing to assemble phased genomes for 189 individuals, identifying pathogenic variants in TBL1XR1, MECP2, and SYNGAP1, plus nine candidate structural variants missed by short-read methods.

    • Yang Sui
    • Jiadong Lin
    • Evan E. Eichler
    ResearchOpen Access
    Nature Communications
    P: 1-16
  • The influence of X chromosome genetic variation on blood lipids and coronary heart disease (CHD) is not well understood. Here, the authors analyse X chromosome sequencing data across 65,322 multi-ancestry individuals, identifying associations of the Xq23 locus with lipid changes and reduced risk of CHD and diabetes mellitus.

    • Pradeep Natarajan
    • Akhil Pampana
    • Gina M. Peloso
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-14
  • An initial draft of the human pangenome is presented and made publicly available by the Human Pangenome Reference Consortium; the draft contains 94 de novo haplotype assemblies from 47 ancestrally diverse individuals.

    • Wen-Wei Liao
    • Mobin Asri
    • Benedict Paten
    ResearchOpen Access
    Nature
    Volume: 617, P: 312-324
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A multi-omic analysis of pancreatic cancer identifies spatially resolved, heterogeneous cell populations including transitional cell types. Analysis of primary samples identifies treatment-related changes in cross-talk between tumor and stromal cells.

    • Daniel Cui Zhou
    • Reyka G. Jayasinghe
    • Li Ding
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 1390-1405
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073
  • At least two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of nuclear factor-κB (NF-κB) signalling, and uncharacterized gene C11orf95; C11orf95–RELA fusion proteins translocate spontaneously to the nucleus to activate NF-κB target genes, and rapidly transform neural stem cells to form tumours in mice

    • Matthew Parker
    • Kumarasamypet M. Mohankumar
    • Richard J. Gilbertson
    Research
    Nature
    Volume: 506, P: 451-455
  • Whole-genome sequencing of medulloblastoma samples reveals several recurrent mutations in genes not previously implicated in the disease, many of which affect components of the epigenetic machinery in different disease subgroups.

    • Giles Robinson
    • Matthew Parker
    • Richard J. Gilbertson
    ResearchOpen Access
    Nature
    Volume: 488, P: 43-48
  • This report from the 1000 Genomes Project describes the genomes of 1,092 individuals from 14 human populations, providing a resource for common and low-frequency variant analysis in individuals from diverse populations; hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites, can be found in each individual.

    • Gil A. McVean
    • David M. Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 491, P: 56-65
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The Somatic Mosaicism across Human Tissues Network aims to create a reference catalogue of somatic mosaicism across different tissues and cells within individuals.

    • Tim H. H. Coorens
    • Ji Won Oh
    • Yuqing Wang
    Reviews
    Nature
    Volume: 643, P: 47-59
  • Whole-genome analysis of oestrogen-receptor-positive tumours in patients treated with aromatase inhibitors show that distinct phenotypes are associated with specific patterns of somatic mutations; however, most recurrent mutations are relatively infrequent so prospective clinical trials will require comprehensive sequencing and large study populations.

    • Matthew J. Ellis
    • Li Ding
    • Elaine R. Mardis
    ResearchOpen Access
    Nature
    Volume: 486, P: 353-360
  • The retinoblastoma genome is shown to be stable, but multiple cancer pathways are identified that are epigenetically deregulated, providing potential new therapeutic targets.

    • Jinghui Zhang
    • Claudia A. Benavente
    • Michael A. Dyer
    ResearchOpen Access
    Nature
    Volume: 481, P: 329-334
  • Ralf Sommer and colleagues present a draft genome sequence of the nematode Pristionchus pacificus, a species that lives in association with beetles and shows a major expansion of protein-coding genes. Comparative analysis with the genomes of the ecologically distinct nematodes C. elegans and B. malayi suggests insights into the association between their genome structures and differing lifestyles.

    • Christoph Dieterich
    • Sandra W Clifton
    • Ralf J Sommer
    Research
    Nature Genetics
    Volume: 40, P: 1193-1198
  • Massively parallel DNA sequencing allows entire genomes to be screened for genetic changes associated with tumour progression. Here, the genomes of four DNA samples from a 44-year-old African-American patient with basal-like breast cancer were analysed. The samples came from peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The findings indicate that cells with a distinct subset of the primary tumour mutation might be selected during metastasis and xenografting.

    • Li Ding
    • Matthew J. Ellis
    • Elaine R. Mardis
    Research
    Nature
    Volume: 464, P: 999-1005
  • Sequencing of over 600 genes in a large collection of lung adenocarcinoma samples provides an overview of somatic mutations and signalling pathways altered in cancer genes in this tumour type.

    • Li Ding
    • Gad Getz
    • Richard K. Wilson
    Research
    Nature
    Volume: 455, P: 1069-1075
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Richard Wilson and colleagues report the genome sequence of Trichinella spiralis, a food-borne parasitic nematode that diverged early in the evolution of the phylum Nematoda. T. spiralis is the most common cause of human trichinellosis.

    • Makedonka Mitreva
    • Douglas P Jasmer
    • Richard K Wilson
    ResearchOpen Access
    Nature Genetics
    Volume: 43, P: 228-235