Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Using the linear references from the pangenome to discover missing autism variants
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Using the linear references from the pangenome to discover missing autism variants

  • Yang Sui  ORCID: orcid.org/0000-0001-7285-87331,
  • Jiadong Lin1,
  • Michelle D. Noyes1,
  • Youngjun Kwon  ORCID: orcid.org/0000-0002-5024-21341,
  • Isaac Wong  ORCID: orcid.org/0000-0003-4877-57481,
  • Nidhi Koundinya  ORCID: orcid.org/0009-0008-7155-12871,
  • William T. Harvey  ORCID: orcid.org/0000-0003-0646-75281,
  • Mei Wu1,
  • Kendra Hoekzema1,
  • Katherine M. Munson  ORCID: orcid.org/0000-0001-8413-64981,
  • Gage H. Garcia  ORCID: orcid.org/0009-0005-2383-722X1,
  • Jordan Knuth  ORCID: orcid.org/0009-0007-0176-70931,
  • Julie Wertz  ORCID: orcid.org/0009-0000-3747-32211,
  • Tianyun Wang  ORCID: orcid.org/0000-0002-5179-087X2,3,4,
  • Kelsey Hennick  ORCID: orcid.org/0000-0002-6127-24005,6,
  • Druha Karunakaran7,
  • Rafael A. Polo Prieto  ORCID: orcid.org/0000-0002-8150-07578,9,
  • Rebecca Meyer-Schuman8,9,
  • Fisher Cherry  ORCID: orcid.org/0009-0001-7646-84228,9,
  • Davut Pehlivan8,9,10,11,
  • Bernhard Suter10,11,
  • Jonas A. Gustafson  ORCID: orcid.org/0000-0002-5748-905X12,13,
  • Danny E. Miller  ORCID: orcid.org/0000-0001-6096-860112,14,
  • Human Pangenome Reference Consortium (HPRC),
  • Hanna Berk-Rauch7,
  • Tomasz J. Nowakowski  ORCID: orcid.org/0000-0003-2345-49645,6,
  • Aravinda Chakravarti  ORCID: orcid.org/0000-0002-4264-22857,15,
  • Huda Y. Zoghbi  ORCID: orcid.org/0000-0002-0700-33498,9,16,17,18,19 &
  • …
  • Evan E. Eichler  ORCID: orcid.org/0000-0002-8246-40141,20 

Nature Communications , Article number:  (2026) Cite this article

  • 1053 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Autism spectrum disorders
  • Genetic variation

Abstract

To better understand large-effect pathogenic variation associated with autism, we generated long-read sequencing (LRS) data to construct phased and near-complete genome assemblies (average contig N50 = 43 Mbp, QV = 56) for 189 individuals from 51 families with unsolved cases. We applied read- and assembly-based strategies to facilitate comprehensive characterization of de novo mutations, structural variants (SVs), and DNA methylation. Using LRS pangenome controls, we efficiently filtered >97% of common SVs exclusive to 87 offspring. We find no evidence of increased autosomal SV burden for probands when compared to unaffected siblings yet observe a suggestive trend toward an increased SV burden on the X chromosome among affected females. We establish a workflow to prioritize potential pathogenic variants by integrating autism risk genes and putative noncoding regulatory elements defined from ATAC-seq and CUT&Tag data from the developing cortex. In total, we identified three pathogenic variants in TBL1XR1, MECP2, and SYNGAP1, as well as nine candidate de novo and biallelic inherited homozygous SVs, most of which were missed by short-read sequencing. Our work highlights the potential of phased genomes to discover complex more pathogenic mutations and the power of the pangenome to restrict the focus on an increasingly smaller number of SVs for clinical evaluation.

Similar content being viewed by others

Systematic analysis and prediction of genes associated with monogenic disorders on human chromosome X

Article Open access 02 November 2022

Shared rare genetic variants in multiplex autism families suggest a social memory gene under selection

Article Open access 03 January 2025

Analysis of recent shared ancestry in a familial cohort identifies coding and noncoding autism spectrum disorder variants

Article Open access 21 February 2022

Data availability

The underlying sequencing data, as well as the processed assembly and alignment files used for analysis in this study for the SSC samples (n = 168) and the complete sample set (n = 189), are available to approved researchers through SFARI Base under Dataset ID DS0000104 and through the National Institute of Mental Health Data Archive (NDA) under Collection ID 3780. Source data are provided with this paper.

Code availability

The code used to perform the analyses and generate results in this study is publicly available and has been deposited in GitHub at https://github.com/EichlerLab/asap, under the MIT license. The specific version of the code associated with this publication is archived in Zenodo and is accessible via https://doi.org/10.5281/zenodo.1814964470. A full list of all software used, along with references, is provided in the Supplementary Notes and Supplementary References. Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.

References

  1. Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res. 15, 778–790 (2022).

    Google Scholar 

  2. Wilfert, A. B. et al. Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nat. Genet 53, 1125–1134 (2021).

    Google Scholar 

  3. Zhou, X. et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet 54, 1305–1319 (2022).

    Google Scholar 

  4. Coe, B. P. et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet 51, 106–116 (2019).

    Google Scholar 

  5. Wang, T. et al. Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders. Proc. Natl. Acad. Sci. 119, e2203491119 (2022).

    Google Scholar 

  6. Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet 54, 1320–1331 (2022).

    Google Scholar 

  7. Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 180, 568–584.e23 (2020).

    Google Scholar 

  8. Yoon, S. et al. Rates of contributory de novo mutation in high and low-risk autism families. Commun. Biol. 4, 1026 (2021).

    Google Scholar 

  9. Sebat, J. et al. Strong Association of De Novo Copy Number Mutations with Autism. Science 316, 445–449 (2007).

    Google Scholar 

  10. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    Google Scholar 

  11. Scott, A. J., Chiang, C. & Hall, I. M. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Res 31, 2249–2257 (2021).

    Google Scholar 

  12. Olivucci, G. et al. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front. Genet. 15, (2024).

  13. Carvalho, C. M. B. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet 17, 224–238 (2016).

    Google Scholar 

  14. Collins, R. L. & Talkowski, M. E. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 1–20 https://doi.org/10.1038/s41576-024-00808-9 (2025).

  15. Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

    Google Scholar 

  16. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet 21, 597–614 (2020).

    Google Scholar 

  17. Noyes, M. D. et al. Familial long-read sequencing increases yield of de novo mutations. Am. J. Hum. Genet. 109, 631–646 (2022).

    Google Scholar 

  18. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

    Google Scholar 

  19. Zhao, X. et al. Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. Am. J. Hum. Genet. 108, 919–928 (2021).

    Google Scholar 

  20. Wojcik, M. H. et al. Beyond the exome: What’s next in diagnostic testing for Mendelian conditions. Am. J. Hum. Genet. 110, 1229–1248 (2023).

    Google Scholar 

  21. Mastrorosa, F. K., Miller, D. E. & Eichler, E. E. Applications of long-read sequencing to Mendelian genetics. Genome Med. 15, 42 (2023).

    Google Scholar 

  22. Hiatt, S. M. et al. Long-read genome sequencing for the molecular diagnosis of neurodevelopmental disorders. Hum. Genet. Genomics Adv. 2, 100023 (2021).

    Google Scholar 

  23. Hiatt, S. M. et al. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. Genome Res 34, 1747–1762 (2024).

    Google Scholar 

  24. Sanchis-Juan, A. et al. Genome sequencing and comprehensive rare-variant analysis of 465 families with neurodevelopmental disorders. Am. J. Hum. Genet. 110, 1343–1355 (2023).

    Google Scholar 

  25. Pauper, M. et al. Long-read trio sequencing of individuals with unsolved intellectual disability. Eur. J. Hum. Genet 29, 637–648 (2021).

    Google Scholar 

  26. Sinha, S. et al. Long read sequencing enhances pathogenic and novel variation discovery in patients with rare diseases. Nat. Commun. 16, 2500 (2025).

    Google Scholar 

  27. Steyaert, W. et al. Unraveling undiagnosed rare disease cases by HiFi long-read genome sequencing. Genome Res 35, 755–768 (2025).

    Google Scholar 

  28. Paschal, C. R. et al. Concordance of Whole-Genome Long-Read Sequencing with Standard Clinical Testing for Prader-Willi and Angelman Syndromes. J. Mol. Diagnostics 27, 166–176 (2025).

    Google Scholar 

  29. Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

    Google Scholar 

  30. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Google Scholar 

  31. Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    Google Scholar 

  32. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).

    Google Scholar 

  33. Porubsky, D. et al. Human de novo mutation rates from a four-generation pedigree reference. Nature 1–10 https://doi.org/10.1038/s41586-025-08922-2 (2025).

  34. Sanders, S. J. et al. Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron 70, 863–885 (2011).

    Google Scholar 

  35. Turner, T. N. et al. Genomic Patterns of De Novo Mutation in Simplex Autism. Cell 171, 710–722.e12 (2017).

    Google Scholar 

  36. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  37. Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. 201178 Preprint at https://doi.org/10.1101/201178 (2018).

  38. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Google Scholar 

  39. Noyes, M. D. et al. Long-read sequencing of trios reveals increased germline and postzygotic mutation rates in repetitive DNA. 2025.07.18.665621 Preprint at https://doi.org/10.1101/2025.07.18.665621 (2025).

  40. Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 42, 1571–1580 (2024).

    Google Scholar 

  41. English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol. 23, 271 (2022).

    Google Scholar 

  42. Gustafson, J. A. et al. Nanopore sequencing of 1000 Genomes Project samples to build a comprehensive catalog of human genetic variation. 2024.03.05.24303792 Preprint at https://doi.org/10.1101/2024.03.05.24303792 (2024).

  43. Schloissnig, S. et al. Structural variation in 1,019 diverse humans based on long-read sequencing. Nature 644, 442–452 (2025).

    Google Scholar 

  44. Hennick, K. et al. Sex differences in the developing human cortex intersect with genetic risk of neurodevelopmental disorders. 2025.09.04.674293 Preprint at https://doi.org/10.1101/2025.09.04.674293 (2025).

  45. Banerjee-Basu, S. & Packer, A. SFARI Gene: an evolving database for the autism research community. Dis. Models Mechanisms 3, 133–135 (2010).

    Google Scholar 

  46. Birtele, M. et al. Non-synaptic function of the autism spectrum disorder-associated gene SYNGAP1 in cortical neurogenesis. Nat. Neurosci. 26, 2090–2103 (2023).

    Google Scholar 

  47. Hardwick, S. A. et al. Delineation of large deletions of the MECP2 gene in Rett syndrome patients, including a familial case with a male proband. Eur. J. Hum. Genet 15, 1218–1229 (2007).

    Google Scholar 

  48. Poleg, T. et al. Unraveling MECP2 structural variants in previously elusive Rett syndrome cases through IGV interpretation. npj Genom. Med. 10, 23 (2025).

    Google Scholar 

  49. Zaghlula, M. et al. Current clinical evidence does not support a link between TBL1XR1 and Rett syndrome: Description of one patient with Rett features and a novel mutation in TBL1XR1, and a review of TBL1XR1 phenotypes. Am. J. Med. Genet. Part A 176, 1683–1687 (2018).

    Google Scholar 

  50. Tillotson, R. & Bird, A. The molecular basis of MeCP2 function in the brain. J. Mol. Biol. 432, 1602–1623 (2020).

    Google Scholar 

  51. Stessman, H. A. F. et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am. J. Hum. Genet. 98, 541–552 (2016).

    Google Scholar 

  52. Rosa, E., Silva, I., Smetana, J. H. C. & de Oliveira, J. F. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int. J. Biol. Macromolecules 259, 129330 (2024).

    Google Scholar 

  53. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Google Scholar 

  54. Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21, 974–984 (2011).

    Google Scholar 

  55. Roller, E., Ivakhno, S., Lee, S., Royce, T. & Tanner, S. Canvas: versatile and scalable detection of copy number variants. Bioinformatics 32, 2375–2377 (2016).

    Google Scholar 

  56. Chen, S. et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. Genome Biol. 20, 291 (2019).

    Google Scholar 

  57. Sierra, A. Y. et al. CPT1c Is Localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity*. J. Biol. Chem. 283, 6878–6885 (2008).

    Google Scholar 

  58. Kępka, A. et al. Potential Role of L-Carnitine in Autism Spectrum Disorder. J. Clin. Med. 10, 1202 (2021).

    Google Scholar 

  59. Reid, K. M. & Brown, G. C. LRPAP1 is released from activated microglia and inhibits microglial phagocytosis and amyloid beta aggregation. Front. Immunol. 14, 1286474 (2023).

  60. Prjibelski, A. D. et al. Accurate isoform discovery with IsoQuant using long reads. Nat. Biotechnol. 41, 915–918 (2023).

    Google Scholar 

  61. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  62. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Google Scholar 

  63. Miller, D. E. et al. Targeted long-read sequencing identifies missing disease-causing variation. Am. J. Hum. Genet. 108, 1436–1449 (2021).

    Google Scholar 

  64. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Google Scholar 

  65. Guo, H. et al. Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet. Med. 21, 1611–1620 (2019).

    Google Scholar 

  66. Trost, B. et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 586, 80–86 (2020).

    Google Scholar 

  67. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Google Scholar 

  68. Pedersen, B. S. et al. Somalier: rapid relatedness estimation for cancer and germline studies using efficient genome sketches. Genome Med. 12, 62 (2020).

    Google Scholar 

  69. Dolzhenko, E. et al. Characterization and visualization of tandem repeats at genome scale. Nat. Biotechnol. 42, 1606–1614 (2024).

    Google Scholar 

  70. Sui, Y. et al. Using the linear references from the pangenome to discover missing autism variants. GitHub/Zenodo repository. https://doi.org/10.5281/zenodo.18149644 (2026).

  71. Rhie, A. et al. The complete sequence of a human Y chromosome. Nature 621, 344–354 (2023).

    Google Scholar 

Download references

Acknowledgements

We thank all of the individuals who participated in this research. We also thank all contributing investigators to the consortia datasets used here from SSC, SAGE, and Baylor College of Medicine, and the families who participated in this research, without whose contributions, genetic studies would be impossible. We thank Tonia Brown for assistance in editing this manuscript. We thank Tom Mokveld (PacBio) for helpful discussions. This work was supported, in part, by the US National Institutes of Health (NIH R01MH101221 to E.E.E.; R01NS057819 to H.Y.Z.; 1F32HD116501-01 to R.M-S.; and DP5OD033357 to D.E.M.) and the Simons Foundation (SFARI #810018 to E.E.E., H.Y.Z., T.J.N., and A.C.). E.E.E. and H.Y.Z. are investigators of the Howard Hughes Medical Institute. This work was also supported, in part, by the National Natural Science Foundation of China (82201314 and 82471194) to T.W. We would like to acknowledge the National Genome Research Institute (NHGRI) for funding the following grants supporting the creation of the human pangenome reference: U41HG010972, U01HG010971, U01HG013760, U01HG013755, U01HG013748, U01HG013744, R01HG011274, and the Human Pangenome Reference Consortium (BioProject ID: PRJNA730823). This article is subject to HHMI’s Open Access to Publications policy. HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their research articles. Pursuant to those licenses, the author-accepted manuscript of this article can be made freely available under a CC BY 4.0 license immediately upon publication.

Author information

Authors and Affiliations

  1. Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA

    Yang Sui, Jiadong Lin, Michelle D. Noyes, Youngjun Kwon, Isaac Wong, Nidhi Koundinya, William T. Harvey, Mei Wu, Kendra Hoekzema, Katherine M. Munson, Gage H. Garcia, Jordan Knuth, Julie Wertz, Marcelo Ayllon, Evan E. Eichler, Lingbin Ni, David Porubsky, Luyao Ren, Andrew B. Stergachis, DongAhn Yoo & Evan E. Eichler

  2. Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China

    Tianyun Wang

  3. Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China

    Tianyun Wang

  4. Autism Research Center, Peking University Health Science Center, Beijing, China

    Tianyun Wang

  5. Department of Neurological Surgery, University of California, San Francisco, CA, USA

    Kelsey Hennick & Tomasz J. Nowakowski

  6. Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA

    Kelsey Hennick & Tomasz J. Nowakowski

  7. Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA

    Druha Karunakaran, Hanna Berk-Rauch & Aravinda Chakravarti

  8. Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA

    Rafael A. Polo Prieto, Rebecca Meyer-Schuman, Fisher Cherry, Davut Pehlivan & Huda Y. Zoghbi

  9. Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA

    Rafael A. Polo Prieto, Rebecca Meyer-Schuman, Fisher Cherry, Davut Pehlivan & Huda Y. Zoghbi

  10. Texas Children’s Hospital, Houston, TX, USA

    Davut Pehlivan & Bernhard Suter

  11. Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

    Davut Pehlivan & Bernhard Suter

  12. Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA

    Jonas A. Gustafson, Danny E. Miller & Tina Graves-Lindsay

  13. Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA

    Jonas A. Gustafson

  14. Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA

    Danny E. Miller

  15. Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA

    Aravinda Chakravarti

  16. Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

    Huda Y. Zoghbi

  17. Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA

    Huda Y. Zoghbi

  18. Department of Neurology, Baylor College of Medicine, Houston, TX, USA

    Huda Y. Zoghbi

  19. Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA

    Huda Y. Zoghbi

  20. Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA

    Evan E. Eichler, Luyao Ren & Evan E. Eichler

  21. McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA

    Derek Albracht, Lucinda Antonacci-Fulton, Sarah Cody, Robert S. Fulton, John E. Garza, Edward A. Belter Jr, Milinn Kremitzki, Juan F. Macias-Velasco, Christopher Markovic, Chad Tomlinson & Ting Wang

  22. Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel

    Ivan A. Alexandrov

  23. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK

    Jamie Allen, Jitender Cheema, Adam Frankish, Mallory A. Freeberg, Leanne Haggerty, S. Nakib Hossain, Sarah E. Hunt, Toby Hunt, Jane E. Loveland, Fergal J. Martin, Jonathan M. Mudge, Swati Sinha, Marie-Marthe Suner, Jack A. S. Tierney & Francesca Floriana Tricomi

  24. Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE

    Alawi A. Alsheikh-Ali, Mohammad Amiruddin Hashmi, Nasna Nassir & Mohammed Uddin

  25. Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA

    Nicolas Altemose, Danilo Dubocanin & Alexander G. Ioannidis

  26. Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA

    Casey Andrews, Zheng Dong, Qichen Fu, Juan Jiang, Milinn Kremitzki, Heather A. Lawson, Daofeng Li, Tianjie Liu, Juan F. Macias-Velasco, Ting Wang, Zilan Xin, Zheng Xu, Wenjin Zhang & Xiaoyu Zhuo

  27. Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA

    Dmitry Antipov, Nancy F. Hansen, Juhyun Kim, Sergey Koren, Adam M. Phillippy, Brandon D. Pickett, Arang Rhie, Steven J. Solar & Brian P. Walenz

  28. UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, 95060, USA

    Mobin Asri, Halle D. Bender, Andrew P. Blair, Ann M. Mc Cartney, Monika Cechova, Xian Chang, Hiram Clawson, Mark Diekhans, Jordan M. Eizenga, Parsa Eskandar, Joshua M. V. Gardner, Maximilian Haeussler, David Haussler, Prajna Hebbar, Glenn Hickey, Todd L. Hillaker, Alexander G. Ioannidis, Nafiseh Jafarzadeh, Ryan Lorig-Roach, Hailey Loucks, Julian K. Lucas, Mira Mastoras, Brandy McNulty, Julian M. Menendez, Karen H. Miga, Shloka Negi, Adam M. Novak, Benedict Paten, Anandi Radhakrishnan, Brian J. Raney, Jouni Sirén & Ivo Violich

  29. The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA

    Jennifer R. Balacco, Giulio Formenti, Nivesh Jain, Erich D. Jarvis, Bonhwang Koo, Jack A. Medico, Sadye Paez, Marco Sollitto & Conor V. Whelan

  30. Bioinnovation and Genome Sciences, The Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA

    Floris P. Barthel, Andrea Guarracino, Yue Hao, Maryam Jehangir & T. Rhyker Ranallo-Benavidez

  31. Human Technopole, Milan, Italy

    Davide Bolognini, Clelia Peano, Alessandro Raveane, Nicole Soranzo & Giulia Zunino

  32. Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA

    Katherine E. Bonini, Eimear E. Kenny, Ruhollah Shemirani & Lisa E. Wang

  33. Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611, USA

    Christina Boucher, Eddie Ferro & Rahul Varki

  34. Canadian Center for Computational Genomics, McGill University, Montréal, QC, H3A 0G1, Canada

    Guillaume Bourque

  35. Department of Human Genetics, McGill University, Montréal, QC, H3A 0G1, Canada

    Guillaume Bourque

  36. Victor Phillip Dahdaleh Institute of Genomic Medicine, Montréal, QC, H3A 0G1, Canada

    Guillaume Bourque

  37. Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA

    Silvia Buonaiuto, Shuo Cao, Vincenza Colonna, Erik Garrison, Andrea Guarracino, Franco L. Marsico, Laura Pignata, Pjotr Prins, Farnaz Salehi & Flavia Villani

  38. Google LLC, Mountain View, CA, 94043, USA

    Andrew Carroll, Pi-Chuan Chang & Kishwar Shafin

  39. Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA

    Haoyu Cheng

  40. Department of Biology, University of Florence, Sesto Fiorentino, FI, 50019, Italy

    Claudio Ciofi, Maria Angela Diroma, Chiara Natali & Marco Sollitto

  41. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA

    Holland C. Conwell, Sarah M. Ford, Richard E. Green, Samuel Sacco, William E. Seligmann & Matteo Tommaso Ungaro

  42. Arizona State University, Consortium for Science, Policy & Outcomes, Washington, DC, 20006, USA

    Robert Cook-Deegan

  43. Center for Digital Medicine, Heinrich Heine University Düsseldorf NRW, Düsseldorf, DE, Germany

    Daniel Doerr, Jana Ebler, Peter Heringer, Tobias Marschall & Arda Söylev

  44. Department for Endocrinology and Diabetology at the Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf NRW, Düsseldorf, DE, Germany

    Daniel Doerr & Peter Heringer

  45. Paul-Langerhans-Group Computational Diabetology, German Diabetes Center (DDZ) and Leibniz Institute for Diabetes Research NRW, Düsseldorf, DE, Germany

    Daniel Doerr & Peter Heringer

  46. Wellcome Sanger Institute, Genome Campus, Hinxton, CB10 1RQ, UK

    Richard Durbin & Nicole Soranzo

  47. Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK

    Richard Durbin

  48. Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University NRW, Düsseldorf, DE, Germany

    Jana Ebler, Tobias Marschall & Arda Söylev

  49. Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA

    Evan E. Eichler & Erich D. Jarvis

  50. ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France

    Anna-Sophie Fiston-Lavier, Capucine Mayoud & Shadi Shahatit

  51. Institut Universitaire de France, Paris, France

    Anna-Sophie Fiston-Lavier

  52. Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA

    Willard W. Ford & Aarushi Sehgal

  53. Department of Bioethics & Humanities, University of Washington School of Medicine, Seattle, WA, 98195, USA

    Stephanie M. Fullerton

  54. Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA

    Yan Gao, Neng Huang, Heng Li, Maximillian G. Marin & Ying Zhou

  55. Department of Anthropology, University of Kansas, Lawrence, KS, 66045, USA

    Obed A. Garcia

  56. School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK

    Shilpa Garg

  57. Traditional, ancestral and unceded territory of the Gabrielino/Tongva peoples, Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA

    Nanibaa’ A. Garrison

  58. Traditional, ancestral and unceded territory of the Gabrielino/Tongva peoples, Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA

    Nanibaa’ A. Garrison

  59. Traditional, ancestral and unceded territory of the Gabrielino/Tongva peoples, Division of General Internal Medicine & Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA

    Nanibaa’ A. Garrison

  60. Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA

    Margarita Geleta

  61. Medical and Population Genomics Lab, Sidra Medicine, Doha, Qatar

    Mohammadmersad Ghorbani, Younes Mokrab & Shabir Moosa

  62. Montreal Heart Institute, Montréal, QC, Canada

    Cristian Groza

  63. Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA

    Melissa Gymrek

  64. Center for Genomic Health, Yale University School of Medicine, New Haven, CT, USA

    Ira M. Hall, Wen-Wei Liao & Shuangjia Lu

  65. Department of Genetics, Yale University School of Medicine, New Haven, CT, USA

    Ira M. Hall, Wen-Wei Liao & Shuangjia Lu

  66. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

    Neng Huang, Heng Li & Maximillian G. Marin

  67. The Center for Bio- and Medical Technologies, Moscow, Russia

    Jonathan LoTempio Jr & Fedor Ryabov

  68. Department of Evolution and Ecology and the Center for Population Biology, University of California, One Shields, Davis, CA, 95616, USA

    Charles H. Langley

  69. Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

    Ben Langmead, Michael C. Schatz & Vikram S. Shivakumar

  70. Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Glennis A. Logsdon

  71. Sun Yat-sen University, Guangzhou, China

    Jianguo Lu

  72. Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA

    Juan F. Macias-Velasco & Ting Wang

  73. Department of Biology and Center for Medical Genomics, Penn State University, University Park, PA, 16802, USA

    Kateryna D. Makova

  74. Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA

    Anna Minkina, Andrew B. Stergachis & Mitchell R. Vollger

  75. Coriell Institute for Medical Research, Camden, NJ, 08103, USA

    Matthew W. Mitchell & Laura B. Scheinfeldt

  76. Department of Biology, Penn State University, University Park, PA, 16802, USA

    Saswat K. Mohanty & Linnéa Smeds

  77. Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar

    Younes Mokrab

  78. Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar

    Younes Mokrab

  79. IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France

    Jean Monlong

  80. MATCH biosystems, S.L, Elche, Spain

    Avelina Moreno-Ochando

  81. Universidad Miguel Hernández de Elche, Elche, Spain

    Avelina Moreno-Ochando

  82. Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan

    Shinichi Morishita, Chie Owa & Yoshihiko Suzuki

  83. Department of Computer Science, University of Pisa, Pisa, Italy

    Njagi Mwaniki & Nadia Pisanti

  84. Law School, University of Wisconsin-Madison, Madison, WI, 53706, USA

    Pilar N. Ossorio

  85. Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy

    Clelia Peano

  86. Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, DE, Germany

    David Porubsky

  87. Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland

    Mikko Rautiainen

  88. Centre for Biomedical Research and Technology, HSE University, Moscow, Russia

    Fedor Ryabov

  89. Department of Biology, Johns Hopkins University, Baltimore, MD, USA

    Michael C. Schatz

  90. University of Amsterdam, Amsterdam, Netherlands

    Mahsa Shabani

  91. School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK

    Nicole Soranzo

  92. Center for Genomic Discovery, Mohammed Bin Rashid University, Dubai Health, UAE

    Ahmad Abou Tayoun

  93. Dubai Health Genomic Medicine Center, Dubai Health, UAE

    Ahmad Abou Tayoun

  94. GenomeArc Inc, Mississauga, ON, Canada

    Mohammed Uddin

  95. Department of Biology and Biotechnologies “Charles Darwin”, University of Rome “La Sapienza”, Piazzale Aldo Moro, 00185 RM, Italy

    Matteo Tommaso Ungaro

  96. Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA

    Charles Wang

  97. PacBio, Menlo Park, CA, 94025, USA

    Aaron M. Wenger

  98. The first affiliated hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China

    Kai Ye

Authors
  1. Yang Sui
    View author publications

    Search author on:PubMed Google Scholar

  2. Jiadong Lin
    View author publications

    Search author on:PubMed Google Scholar

  3. Michelle D. Noyes
    View author publications

    Search author on:PubMed Google Scholar

  4. Youngjun Kwon
    View author publications

    Search author on:PubMed Google Scholar

  5. Isaac Wong
    View author publications

    Search author on:PubMed Google Scholar

  6. Nidhi Koundinya
    View author publications

    Search author on:PubMed Google Scholar

  7. William T. Harvey
    View author publications

    Search author on:PubMed Google Scholar

  8. Mei Wu
    View author publications

    Search author on:PubMed Google Scholar

  9. Kendra Hoekzema
    View author publications

    Search author on:PubMed Google Scholar

  10. Katherine M. Munson
    View author publications

    Search author on:PubMed Google Scholar

  11. Gage H. Garcia
    View author publications

    Search author on:PubMed Google Scholar

  12. Jordan Knuth
    View author publications

    Search author on:PubMed Google Scholar

  13. Julie Wertz
    View author publications

    Search author on:PubMed Google Scholar

  14. Tianyun Wang
    View author publications

    Search author on:PubMed Google Scholar

  15. Kelsey Hennick
    View author publications

    Search author on:PubMed Google Scholar

  16. Druha Karunakaran
    View author publications

    Search author on:PubMed Google Scholar

  17. Rafael A. Polo Prieto
    View author publications

    Search author on:PubMed Google Scholar

  18. Rebecca Meyer-Schuman
    View author publications

    Search author on:PubMed Google Scholar

  19. Fisher Cherry
    View author publications

    Search author on:PubMed Google Scholar

  20. Davut Pehlivan
    View author publications

    Search author on:PubMed Google Scholar

  21. Bernhard Suter
    View author publications

    Search author on:PubMed Google Scholar

  22. Jonas A. Gustafson
    View author publications

    Search author on:PubMed Google Scholar

  23. Danny E. Miller
    View author publications

    Search author on:PubMed Google Scholar

  24. Hanna Berk-Rauch
    View author publications

    Search author on:PubMed Google Scholar

  25. Tomasz J. Nowakowski
    View author publications

    Search author on:PubMed Google Scholar

  26. Aravinda Chakravarti
    View author publications

    Search author on:PubMed Google Scholar

  27. Huda Y. Zoghbi
    View author publications

    Search author on:PubMed Google Scholar

  28. Evan E. Eichler
    View author publications

    Search author on:PubMed Google Scholar

Consortia

Human Pangenome Reference Consortium (HPRC)

  • Derek Albracht
  • , Ivan A. Alexandrov
  • , Jamie Allen
  • , Alawi A. Alsheikh-Ali
  • , Nicolas Altemose
  • , Casey Andrews
  • , Dmitry Antipov
  • , Lucinda Antonacci-Fulton
  • , Mobin Asri
  • , Marcelo Ayllon
  • , Jennifer R. Balacco
  • , Floris P. Barthel
  • , Halle D. Bender
  • , Andrew P. Blair
  • , Davide Bolognini
  • , Katherine E. Bonini
  • , Christina Boucher
  • , Guillaume Bourque
  • , Silvia Buonaiuto
  • , Shuo Cao
  • , Andrew Carroll
  • , Ann M. Mc Cartney
  • , Monika Cechova
  • , Pi-Chuan Chang
  • , Xian Chang
  • , Jitender Cheema
  • , Haoyu Cheng
  • , Claudio Ciofi
  • , Hiram Clawson
  • , Sarah Cody
  • , Vincenza Colonna
  • , Holland C. Conwell
  • , Robert Cook-Deegan
  • , Mark Diekhans
  • , Maria Angela Diroma
  • , Daniel Doerr
  • , Zheng Dong
  • , Danilo Dubocanin
  • , Richard Durbin
  • , Jana Ebler
  • , Evan E. Eichler
  • , Jordan M. Eizenga
  • , Parsa Eskandar
  • , Eddie Ferro
  • , Anna-Sophie Fiston-Lavier
  • , Sarah M. Ford
  • , Willard W. Ford
  • , Giulio Formenti
  • , Adam Frankish
  • , Mallory A. Freeberg
  • , Qichen Fu
  • , Stephanie M. Fullerton
  • , Robert S. Fulton
  • , Yan Gao
  • , Gage H. Garcia
  • , Obed A. Garcia
  • , Joshua M. V. Gardner
  • , Shilpa Garg
  • , Erik Garrison
  • , Nanibaa’ A. Garrison
  • , John E. Garza
  • , Margarita Geleta
  • , Mohammadmersad Ghorbani
  • , Tina Graves-Lindsay
  • , Richard E. Green
  • , Cristian Groza
  • , Andrea Guarracino
  • , Melissa Gymrek
  • , Maximilian Haeussler
  • , Leanne Haggerty
  • , Ira M. Hall
  • , Nancy F. Hansen
  • , Yue Hao
  • , Mohammad Amiruddin Hashmi
  • , David Haussler
  • , Prajna Hebbar
  • , Peter Heringer
  • , Glenn Hickey
  • , Todd L. Hillaker
  • , S. Nakib Hossain
  • , Neng Huang
  • , Sarah E. Hunt
  • , Toby Hunt
  • , Alexander G. Ioannidis
  • , Nafiseh Jafarzadeh
  • , Nivesh Jain
  • , Erich D. Jarvis
  • , Maryam Jehangir
  • , Juan Jiang
  • , Edward A. Belter Jr
  • , Jonathan LoTempio Jr
  • , Eimear E. Kenny
  • , Juhyun Kim
  • , Bonhwang Koo
  • , Sergey Koren
  • , Milinn Kremitzki
  • , Charles H. Langley
  • , Ben Langmead
  • , Heather A. Lawson
  • , Daofeng Li
  • , Heng Li
  • , Wen-Wei Liao
  • , Jiadong Lin
  • , Tianjie Liu
  • , Glennis A. Logsdon
  • , Ryan Lorig-Roach
  • , Hailey Loucks
  • , Jane E. Loveland
  • , Jianguo Lu
  • , Shuangjia Lu
  • , Julian K. Lucas
  • , Juan F. Macias-Velasco
  • , Kateryna D. Makova
  • , Maximillian G. Marin
  • , Christopher Markovic
  • , Tobias Marschall
  • , Franco L. Marsico
  • , Fergal J. Martin
  • , Mira Mastoras
  • , Capucine Mayoud
  • , Brandy McNulty
  • , Jack A. Medico
  • , Julian M. Menendez
  • , Karen H. Miga
  • , Anna Minkina
  • , Matthew W. Mitchell
  • , Saswat K. Mohanty
  • , Younes Mokrab
  • , Jean Monlong
  • , Shabir Moosa
  • , Avelina Moreno-Ochando
  • , Shinichi Morishita
  • , Jonathan M. Mudge
  • , Katherine M. Munson
  • , Njagi Mwaniki
  • , Nasna Nassir
  • , Chiara Natali
  • , Shloka Negi
  • , Lingbin Ni
  • , Adam M. Novak
  • , Pilar N. Ossorio
  • , Chie Owa
  • , Sadye Paez
  • , Benedict Paten
  • , Clelia Peano
  • , Adam M. Phillippy
  • , Brandon D. Pickett
  • , Laura Pignata
  • , Nadia Pisanti
  • , David Porubsky
  • , Pjotr Prins
  • , Anandi Radhakrishnan
  • , T. Rhyker Ranallo-Benavidez
  • , Brian J. Raney
  • , Mikko Rautiainen
  • , Alessandro Raveane
  • , Luyao Ren
  • , Arang Rhie
  • , Fedor Ryabov
  • , Samuel Sacco
  • , Farnaz Salehi
  • , Michael C. Schatz
  • , Laura B. Scheinfeldt
  • , Aarushi Sehgal
  • , William E. Seligmann
  • , Mahsa Shabani
  • , Kishwar Shafin
  • , Shadi Shahatit
  • , Ruhollah Shemirani
  • , Vikram S. Shivakumar
  • , Swati Sinha
  • , Jouni Sirén
  • , Linnéa Smeds
  • , Steven J. Solar
  • , Marco Sollitto
  • , Nicole Soranzo
  • , Andrew B. Stergachis
  • , Marie-Marthe Suner
  • , Yoshihiko Suzuki
  • , Arda Söylev
  • , Ahmad Abou Tayoun
  • , Jack A. S. Tierney
  • , Chad Tomlinson
  • , Francesca Floriana Tricomi
  • , Mohammed Uddin
  • , Matteo Tommaso Ungaro
  • , Rahul Varki
  • , Flavia Villani
  • , Ivo Violich
  • , Mitchell R. Vollger
  • , Brian P. Walenz
  • , Charles Wang
  • , Lisa E. Wang
  • , Ting Wang
  • , Aaron M. Wenger
  • , Conor V. Whelan
  • , Zilan Xin
  • , Zheng Xu
  • , Kai Ye
  • , DongAhn Yoo
  • , Wenjin Zhang
  • , Ying Zhou
  • , Xiaoyu Zhuo
  •  & Giulia Zunino

Contributions

Y.S. and E.E.E. conceptualized the study. K. Ho., R.A.P.P., D.P., and B.S. collected samples. K.M.M., K. Ho., G.H.G., and J.K. generated the data. Y.S., Y.K., I.W., and N.K. performed data quality control. Y.S., J.L., M.D.N., I.W., and N.K. conducted the formal analyses. Y.S. and I.W. created the visualizations. Y.S., J.L., W.T.H., and M.W. developed the methodology. K. He., D.K., J.A.G., D.E.M., and the HPRC provided resources. Y.K., I.W., N.K., and J.W. developed software. Y.S., J.L., I.W., T.W., R.A.P.P., R.M.-S., and F.C. performed validation. Y.S. wrote the original draft. Y.S., E.E.E., H.Y.Z., J.L., M.D.N., Y.K., I.W., N.K., W.T.H., M.W., J.W., K. Ho., K.M.M., G.H.G., J.K., T.W., K. He., D.K., R.A.P.P., R.M.-S., F.C., D.P., B.S., J.A.G., D.E.M., T.J.N., A.C., H.B.-R. and the HPRC reviewed and edited the manuscript. E.E.E., H.Y.Z., A.C., and T.J.N. supervised the study.

Corresponding author

Correspondence to Evan E. Eichler.

Ethics declarations

Competing interests

E.E.E. is a scientific advisory board (SAB) member of Variant Bio, Inc. D.E.M. is on SABs at Oxford Nanopore Technologies (ONT) and Basis Genetics, is engaged in research agreements with ONT and PacBio, has received research and travel support from ONT and PacBio, holds stock options in MyOme and Basis Genetics, and is a consultant for MyOme. J.A.G. has received travel support from ONT. H.Y.Z. is a member of the Regeneron Board of Directors and an advisory board member to The Column Group, Cajal Therapeutics (also co-founder), and Lyterian. D.P. provides consulting service to Ionis Pharmaceuticals, M2DS Therapeutics and Acadia Pharmaceuticals. All other authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Olaf Riess and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Y., Lin, J., Noyes, M.D. et al. Using the linear references from the pangenome to discover missing autism variants. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68378-4

Download citation

  • Received: 11 August 2025

  • Accepted: 06 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68378-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing