Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1453 results
Advanced filters: Author: MARK M. JONES Clear advanced filters
  • Climate change can alter when and how animals grow, breed, and migrate, but it is unclear whether this allows populations to persist. This global study shows that shifts in seasonal timing are key to helping vertebrate species maintain population growth under global warming.

    • Viktoriia Radchuk
    • Carys V. Jones
    • Martijn van de Pol
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Linking prior epigenetic status to future outcomes remains a challenge. Here, authors show recording neuronal enhancer activity across postnatal development in mice reveals loci that predict and can be manipulated to modify acute seizure response.

    • Benjamin D. Boros
    • Mariam A. Gachechiladze
    • Timothy M. Miller
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • This study provides new insights into the role of endoglin (ENG) as a co-receptor in endothelial cells and addresses a gap-in-knowledge on how ENG could be involved in both TGF-β and BMP9 signalling. Such knowledge greatly facilitates therapeutic targeting of ENG-related pathways.

    • Jingxu Guo
    • Karolina Kostrzyńska
    • Wei Li
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-20
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Oriented growth is an important pathway for crystal growth. Here, the authors show that gibbsite nanoplates form mesocrystals through directed sliding and staggered stacking, as demonstrated by in situ microscopy and molecular simulations.

    • Xiaoxu Li
    • Tuan A. Ho
    • Xin Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Reanalysis of radiometric data from Cassini indicates that Titan does not contain a subsurface ocean, as strong tidal dissipation observed in its gravity field is not consistent with the presence of a liquid layer.

    • Flavio Petricca
    • Steven D. Vance
    • Jonathan I. Lunine
    ResearchOpen Access
    Nature
    Volume: 648, P: 556-561
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Hutchinson-Gilford Progeria Syndrome is characterized by premature aging with cardiovascular disease being the main cause of death. Here the authors show that inhibition of the NAT10 enzyme enhances cardiac function and fitness, and reduces age-related phenotypes in a mouse model of premature aging.

    • Gabriel Balmus
    • Delphine Larrieu
    • Stephen P. Jackson
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14
  • Translation initiation and elongation factors can be targets for cancer treatment. Here, the authors show that inhibiting translation elongation through eIF5A impairs mitochondrial function, slowing the proliferation of tumour cells.

    • Aristeidis P. Sfakianos
    • Rebecca M. Raven
    • Anne E. Willis
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Baked sediment, heat-shattered artefacts and introduced pyrite in a 400,000-year-old Palaeolithic occupation site in Suffolk, UK provide evidence of intentional fire-making, marking a pivotal moment in human development.

    • Rob Davis
    • Marcus Hatch
    • Nick Ashton
    Research
    Nature
    Volume: 649, P: 631-637
  • This study describes the integrative analysis of 111 reference human epigenomes, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression; the results annotate candidate regulatory elements in diverse tissues and cell types, their candidate regulators, and the set of human traits for which they show genetic variant enrichment, providing a resource for interpreting the molecular basis of human disease.

    • Anshul Kundaje
    • Wouter Meuleman
    • Manolis Kellis
    ResearchOpen Access
    Nature
    Volume: 518, P: 317-330
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Spatial transcriptomic analysis of cells in intestinal fistulae of patients with Crohn’s disease reveals the existence of specialized fistula-associated cell states with distinct signalling profiles and extracellular matrix architecture.

    • Colleen McGregor
    • Xiao Qin
    • Alison Simmons
    ResearchOpen Access
    Nature
    Volume: 649, P: 703-712
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Plasmids drive gene transfer among pathogens, thus posing a critical global health threat. This study reveals the convergence of key virulence and antibiotic resistance genes on plasmids isolated from extra-intestinal pathogenic Escherichia coli.

    • Zheng Jie Lian
    • Nguyen Thi Khanh Nhu
    • Mark A. Schembri
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-13
  • Weyl particles are massless relativistic fermions recently observed in solid-state materials where they are characterized by Weyl points: topologically protected crossings in their band structure. Here, the authors demonstrate a novel type of plasmonic Weyl point in a magnetized plasma.

    • Wenlong Gao
    • Biao Yang
    • Shuang Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-8
  • Low-damage and high-precision imaging can be achieved by passing the same probe photons through the specimen more than once, and this has been previously achieved in double-pass transmission microscopy. Here, the authors generalize this idea to full-field multi-pass microscopy using a self-imaging cavity.

    • Thomas Juffmann
    • Brannon B. Klopfer
    • Mark A. Kasevich
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-5
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136