Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–6 of 6 results
Advanced filters: Author: Mazyar Mirrahimi Clear advanced filters
  • A quantum-error-correction system is demonstrated in which natural errors due to energy loss are suppressed by encoding a logical state as a superposition of Schrödinger-cat states, which results in the system reaching the ‘break-even’ point, at which the lifetime of a qubit exceeds the lifetime of the constituents of the system.

    • Nissim Ofek
    • Andrei Petrenko
    • R. J. Schoelkopf
    Research
    Nature
    Volume: 536, P: 441-445
  • An artificial Kerr medium has been engineered using superconducting circuits, enabling the observation of the characteristic collapse and revival of a coherent state; this behaviour could, for example, be used in single-photon generation and quantum logic operations.

    • Gerhard Kirchmair
    • Brian Vlastakis
    • R. J. Schoelkopf
    Research
    Nature
    Volume: 495, P: 205-209
  • Implementing full quantum error correction incurs a significant hardware overhead. Here, the authors propose a quantum computing architecture combining superconducting cat qubits with 2D local LDPC codes, featuring low overhead and ease of implementation.

    • Diego Ruiz
    • Jérémie Guillaud
    • Christophe Vuillot
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Qubit-cavity entanglement can be used for quantum information processing and for investigating the quantum-to-classical transition with high control. Here, the authors characterize the entanglement between an artificial atom and a cat state and its susceptibility to decoherence through Bell test witnesses.

    • Brian Vlastakis
    • Andrei Petrenko
    • R. J. Schoelkopf
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-8
  • The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.

    • Raphaël Lescanne
    • Marius Villiers
    • Zaki Leghtas
    Research
    Nature Physics
    Volume: 16, P: 509-513