Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 422 results
Advanced filters: Author: Paul C. Lambert Clear advanced filters
  • Photodiodes with an intrinsic narrow spectral response make it possible to discriminate between red, green and blue light without the need for any optical filters.

    • Qianqian Lin
    • Ardalan Armin
    • Paul Meredith
    Research
    Nature Photonics
    Volume: 9, P: 687-694
  • Despite the identification of genetic risk loci for late-onset Alzheimer’s disease (LOAD), the genetic architecture and prediction remains unclear. Here, the authors use genetic risk scores for prediction of LOAD across three datasets and show evidence suggesting oligogenic variant architecture for this disease.

    • Qian Zhang
    • Julia Sidorenko
    • Peter M. Visscher
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-11
  • High-harmonic generation is now capable of delivering high-energy X-ray pulses with short duration, but achieving elliptical polarization remains challenging. Here, Lambert et al. use a cross-polarized two-colour laser field to produce elliptically polarized X-rays and measure magnetic circular dichroism in nickel.

    • G. Lambert
    • B. Vodungbo
    • M. Fajardo
    Research
    Nature Communications
    Volume: 6, P: 1-6
  • Advancing electrochemical technologies requires local information that is not available with traditional techniques. Here, the authors introduce a neutron imaging methodology to visualize concentration distributions in operando nonaqueous redox flow cells, shedding light into reactive mass transport.

    • Rémy Richard Jacquemond
    • Maxime van der Heijden
    • Antoni Forner-Cuenca
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-16
  • Reduced glomerular filtration rate (eGFR) is a hallmark of chronic kidney disease. Here, Pattaro et al. conduct a meta-analysis to discover several new loci associated with variation in eGFR and find that genes associated with eGFR loci often encode proteins potentially related to kidney development.

    • Cristian Pattaro
    • Alexander Teumer
    • Caroline S. Fox
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-19
  • Measurements reveal the exciton binding energy, dielectric constant and refractive index of planar perovskite solar cells.

    • Qianqian Lin
    • Ardalan Armin
    • Paul Meredith
    Research
    Nature Photonics
    Volume: 9, P: 106-112
  • Meta-analysis of genome-wide association studies on Alzheimer’s disease and related dementias identifies new loci and enables generation of a new genetic risk score associated with the risk of future Alzheimer’s disease and dementia.

    • Céline Bellenguez
    • Fahri Küçükali
    • Jean-Charles Lambert
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 412-436
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Low-cost, efficient solar cells are sought as an alternative to silicon photovoltaics. Here a dye-based bifacial solar cell that is capable of efficient generation of electricity for light incident on either its front or rear face is demonstrated.

    • Seigo Ito
    • Shaik M. Zakeeruddin
    • Michael Grätzel
    Research
    Nature Photonics
    Volume: 2, P: 693-698
  • Upon proteotoxic stress, metazoan cells sequester protein aggregates in huge structures termed aggresomes. Here, the authors show that the disaggregase p97/VCP mediates the breakdown of aggresomes as a prerequisite for their degradation by autophagy.

    • Maria Körner
    • Paul Müller
    • Alexander Buchberger
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding dynamics of fermionic bound states is important for their potential application in quantum devices. Here the authors study zero temperature dynamics and dissipation of fermions bound on a moving goal-post shaped wire in superfluid 3He-B.

    • S. Autti
    • S. L. Ahlstrom
    • D. E. Zmeev
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-7
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The degradation of dead wood by basidiomycete fungi relies on Fenton chemistry under aerobic conditions. Here, Röllig et al. show that these fungi can also thrive and degrade wood in anoxia, switching from a Fenton chemistry-based process to the secretion of plant cell wall-active enzymes.

    • Robert Röllig
    • Annie Lebreton
    • Jean-Guy Berrin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • John Chambers and colleagues identify common variants at four loci associated with serum creatinine levels, a marker of kidney function. Their findings provide insight into the pathways underlying susceptibility to chronic kidney disease.

    • John C Chambers
    • Weihua Zhang
    • Jaspal S Kooner
    Research
    Nature Genetics
    Volume: 42, P: 373-375
  • Distinguishing band and Mott insulators experimentally represents a longstanding challenge. Here, the authors demonstrate a momentum-resolved signature of a dimerized Mott-insulator in the out-of-plane spectral function of Nb3Br8.

    • Mihir Date
    • Francesco Petocchi
    • Niels B. M. Schröter
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • A purpose-built implantable system based on biomimetic epidural electrical stimulation of the spinal cord reduces the severity of hypotensive complications in people with spinal cord injury and improves quality of life.

    • Aaron A. Phillips
    • Aasta P. Gandhi
    • Grégoire Courtine
    ResearchOpen Access
    Nature Medicine
    Volume: 31, P: 2946-2957
  • Many ligand-binding assays still rely on signals that scale linearly with probe concentration. The authors present lasing detection probes with a dye-labelled virus as the gain medium to optically amplify the signal, which could enable much higher signals than for fluorescent quantification.

    • John E. Hales
    • Guy Matmon
    • Gabriel Aeppli
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-11
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Understanding the plating and stripping behaviours of lithium metal is crucial for high-energy battery development. Here, authors track these electrochemical processes in real time by an operando synchrotron X-ray tomographic microscopy, revealing the formation of inactive lithium microstructures.

    • Matthew Sadd
    • Shizhao Xiong
    • Aleksandar Matic
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-11
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12