Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 271 results
Advanced filters: Author: Richard Wan Clear advanced filters
  • Data provided by Amazonian peoples are used to estimate the value of wild animals as a source of food, including its spatial distribution and nutritional value, providing information that will be key for improved management of forest ecosystems in the region.

    • André Pinassi Antunes
    • Pedro de Araujo Lima Constantino
    • Hani R. El Bizri
    ResearchOpen Access
    Nature
    Volume: 648, P: 625-633
  • The valorization of glycerol to propylene glycol is economically attractive but involves high hydrogen pressures. Here, the authors report a thermo-electroreduction strategy using a cobalt-cluster-on-copper catalyst, which enables propylene glycol production even at ampere level current density.

    • Huaiyu Chang
    • Longhai Zhang
    • Wan Ru Leow
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • A comparison of alpha diversity (number of plant species) and dark diversity (species that are currently absent from a site despite being ecologically suitable) demonstrates the negative effects of regional-scale anthropogenic activity on plant diversity.

    • Meelis Pärtel
    • Riin Tamme
    • Martin Zobel
    ResearchOpen Access
    Nature
    Volume: 641, P: 917-924
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • This report from the 1000 Genomes Project describes the genomes of 1,092 individuals from 14 human populations, providing a resource for common and low-frequency variant analysis in individuals from diverse populations; hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites, can be found in each individual.

    • Gil A. McVean
    • David M. Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 491, P: 56-65
  • Results for the final phase of the 1000 Genomes Project are presented including whole-genome sequencing, targeted exome sequencing, and genotyping on high-density SNP arrays for 2,504 individuals across 26 populations, providing a global reference data set to support biomedical genetics.

    • Adam Auton
    • Gonçalo R. Abecasis
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 526, P: 68-74
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • Amyloid fibrils can accumulate in tissues outside the brain, yet the impact is incompletely understood. Here the researchers show that, with age, mouse bone marrow fat cells become senescent and secrete SAP/PTX2, driving amyloid buildup and bone loss. Clearing senescent fat cells or depleting SAP/PTX2 reduces marrow amyloid deposits and restores bone health.

    • Surendra Kumar
    • Kangping Song
    • Mei Wan
    ResearchOpen Access
    Nature Aging
    Volume: 5, P: 1771-1789
  • Emphysematous pyelonephritis is a severe, necrotizing, renal parenchymal infection that is characterized by the production of intraparenchymal gas. Predominantly affecting female diabetics, the presentation of this disorder has changed over the past 25 years. A more conservative approach to treatment is now recommended.

    • Alan R. Pontin
    • Richard D. Barnes
    Reviews
    Nature Reviews Urology
    Volume: 6, P: 272-279
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073
  • The heterogeneity of whole-exome sequencing (WES) data generation methods presents a challenge to joint analysis. Here, the authors present a bioinformatics strategy to generate high-quality data from processing diversely generated WES samples, as applied in the Alzheimer’s Disease Sequencing Project.

    • Yuk Yee Leung
    • Adam C. Naj
    • Li-San Wang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • RNA folding free energy nearest neighbor parameters were determined for sequences with the nucleotide m6A. The RNAstructure software package can accommodate modified nucleotides, enabling secondary structure prediction of sequences with m6A.

    • Elzbieta Kierzek
    • Xiaoju Zhang
    • David H. Mathews
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • The bacterium Helicobacter pylori, often found in the human stomach, can be classified into distinct subpopulations associated with the geographic origin of the host. Here, the authors provide insights into H. pylori population structure by collecting over 1,000 clinical strains from 50 countries and generating and analyzing high-quality bacterial genome sequences.

    • Kaisa Thorell
    • Zilia Y. Muñoz-Ramírez
    • Charles S. Rabkin
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-16
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • The C. elegans PIWI protein PRG-1 resides in the membraneless organelle P granule. Here, the authors identify the constitutive P granule protein DEPS-1 as an interactor of PRG-1 and show its function in piRNA-dependent silencing. DEPS-1 and PRG-1 form elongated condensates in vivo.

    • Kin Man Suen
    • Fabian Braukmann
    • Eric Alexander Miska
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • GIANT, a genetically informed brain atlas, integrates genetic heritability with neuroanatomy. It shows strong neuroanatomical validity and surpasses traditional atlases in discovery power for brain imaging genomics.

    • Jingxuan Bao
    • Junhao Wen
    • Li Shen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18