Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 243 results
Advanced filters: Author: Timothy B. Wheeler Clear advanced filters
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Glucocorticoid resistance is partly due to epigenetic alterations, but the regulatory mechanisms driving these remain poorly understood. Here, a link between the activity of a lineage-specific transcription factor PU.1 and epigenetic modulators mediating the response to glucocorticoids is described in acute lymphoblastic leukemia.

    • Dominik Beck
    • Honghui Cao
    • Duohui Jing
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Pulmonary hypertension and congestive right heart failure afflict some cattle living at high altitude in an autosomal dominant pattern, yet no responsible genes have been identified. Here Newman et al.use whole-exome sequencing to identify variants in the hypoxia inducible factor gene, EPAS1.

    • John H. Newman
    • Timothy N. Holt
    • Rizwan Hamid
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-5
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Genome-wide association analyses based on whole-genome sequencing and imputation identify 40 new risk variants for colorectal cancer, including a strongly protective low-frequency variant at CHD1 and loci implicating signaling and immune function in disease etiology.

    • Jeroen R. Huyghe
    • Stephanie A. Bien
    • Ulrike Peters
    Research
    Nature Genetics
    Volume: 51, P: 76-87
  • Sanchez-Delgado, Frank et al. develop a method for single molecule, single nucleotide profiling of small RNA biomarker methylation status. They apply this method to lung cancer liquid biopsy samples to identify a differential pattern of methylation of a ribosomal RNA fragment with diagnostic potential.

    • Marta Sanchez-Delgado
    • Maurice Frank
    • Timothy Rajakumar
    ResearchOpen Access
    Communications Medicine
    Volume: 5, P: 1-10
  • Explosive growth is attributed to the BCR::ABL1 gene 3–14 years before diagnosis of chronic myeloid leukaemia, highlighting the oncogenic potency of gene fusion and the slow and sequential trajectories of most other cancers.

    • Aleksandra E. Kamizela
    • Daniel Leongamornlert
    • Jyoti Nangalia
    ResearchOpen Access
    Nature
    Volume: 640, P: 982-990
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Both rare and common variants contribute to the aetiology of complex traits such as type 2 diabetes (T2D). Here, the authors examine the effect of coding variation on glycaemic traits and T2D, and identify low-frequency variation in GLP1Rsignificantly associated with these traits.

    • Jennifer Wessel
    • Audrey Y Chu
    • Mark O Goodarzi
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-16
  • Malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, in turn resulting in delayed mitosis and catastrophic cell division.

    • Luigi Perelli
    • Li Zhang
    • Giannicola Genovese
    Research
    Nature
    Volume: 640, P: 1083-1092
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The authors summarize the data produced by phase III of the Encyclopedia of DNA Elements (ENCODE) project, a resource for better understanding of the human and mouse genomes.

    • Federico Abascal
    • Reyes Acosta
    • Zhiping Weng
    ResearchOpen Access
    Nature
    Volume: 583, P: 699-710
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Genomic studies often lack representation from diverse populations, limiting equitable insights. Here, the authors show that the BIG Initiative captures extensive genetic diversity and reveals ancestry-linked health disparities in a community-based Mid-South cohort.

    • Silvia Buonaiuto
    • Franco Marsico
    • Vincenza Colonna
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Melorheostosis is characterized by bone overgrowth and associated with pain and functional impairment. Here, the authors use whole exome sequencing to identify somatic mutations in MAP2K1 in affected bone of melorheostosis patients which is associated with increased proliferation but delayed differentiation of cultured osteoblasts.

    • Heeseog Kang
    • Smita Jha
    • Timothy Bhattacharyya
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-12
  • Claudia Langenberg, James Meigs and colleagues apply a joint meta-analysis approach that accounts for differences in body mass index to identify variants associated with glycemic traits. They report six new loci associated with fasting insulin levels and provide insights into the genetic basis of insulin resistance.

    • Alisa K Manning
    • Marie-France Hivert
    • Claudia Langenberg
    Research
    Nature Genetics
    Volume: 44, P: 659-669
  • Analyses of in vivo models, cell lines and patient-derived samples show that apolipoprotein B mRNA-editing catalytic subunit 3B (APOBEC3B) not only restrains lung tumor initiation but also that its upregulation is associated with resistance to targeted therapies. This study highlights the complex and context-dependent role of APOBEC3B in lung cancer.

    • Deborah R. Caswell
    • Philippe Gui
    • Charles Swanton
    ResearchOpen Access
    Nature Genetics
    Volume: 56, P: 60-73
  • Zhenglin Yang and colleagues use whole-exome sequencing to identify a rare variant in the FGD6 gene that is associated with the polypoidal choroidal vasculopathy subtype of wet age-related macular degeneration. They show that FGD6 regulates proangiogenic effects together with VEGF and that the mutation results in abnormal retinal vessel development.

    • Lulin Huang
    • Houbin Zhang
    • Zhenglin Yang
    Research
    Nature Genetics
    Volume: 48, P: 640-647
  • Causally linking a mutation to clinical phenotypes in rare hereditary diseases is both challenging and illuminating. Here the authors identify PI3Kɣ mutations in a patient with immune dysregulation, and recapitulate the phenotypes in PI3Kɣ-deficient mice by exposing them to natural microbiota from pet-shop mice.

    • Andrew J. Takeda
    • Timothy J. Maher
    • Carrie L. Lucas
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-12
  • Cancer genetics has benefited from the advent of next generation sequencing, yet a comparison of sequencing and analysis techniques is lacking. Here, the authors sequence a normal-tumour pair and perform data analysis at multiple institutes and highlight some of the pitfalls associated with the different methods.

    • Tyler S. Alioto
    • Ivo Buchhalter
    • Ivo G. Gut
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-13
  • Erik Ingelsson and colleagues report a large-scale genome-wide meta-analysis for associations to the extremes of anthropometric traits, including body mass index, height, waist-to-hip ratio and clinical obesity. They identify four loci newly associated with height and seven loci newly associated with clinical obesity and find overlap in the genetic structure and distribution of variants identified for these extremes of the trait distributions and for the general population.

    • Sonja I Berndt
    • Stefan Gustafsson
    • Erik Ingelsson
    Research
    Nature Genetics
    Volume: 45, P: 501-512
  • Glioma tumours are known to be heterogenous in mutation and gene expression patterns, but sampling limitations can lead to inaccurate detection of evolutionary events. Here, the authors carry out multi-omics analysis of multi-regional biopsies from 68 patients and show differential mutations in non-enhancing regions.

    • Leland S. Hu
    • Fulvio D’Angelo
    • Nhan L. Tran
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-20
  • A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.

    • Ji Chen
    • Cassandra N. Spracklen
    • Cornelia van Duijn
    Research
    Nature Genetics
    Volume: 53, P: 840-860