Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 51–100 of 588 results
Advanced filters: Author: X Luo Clear advanced filters
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The CMS Collaboration reports the study of three simultaneous hard interactions between quarks and gluons in proton–proton collisions. This manifests through the concurrent production of three J/ψ mesons, which consist of a charm-quark–antiquark pair.

    • A. Tumasyan
    • W. Adam
    • W. Vetens
    ResearchOpen Access
    Nature Physics
    Volume: 19, P: 338-350
  • Recently, superconductivity near 80 K was observed in La3Ni2O7 under high pressure, but the mechanism is debated. Here the authors report angle-resolved photoemission spectroscopy measurements under ambient pressure, revealing flat bands with strong electronic correlations that could be linked to superconductivity.

    • Jiangang Yang
    • Hualei Sun
    • X. J. Zhou
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Here, Shao et. al attribute the reduction in bone mechano-responsiveness seen in type 2 diabetes to abnormal osteocytic calcium dynamics. They identify reduced SERCA2 pump activity as a mediator of this process and show that rescuing SERCA2 significantly improves bone mechanical adaptation in this context.

    • Xi Shao
    • Yulan Tian
    • Da Jing
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-22
  • Here, the authors design NaNbO3 based ceramics with the aim of enabling a field-induced reversible phase transformation between the antiferroelectric and ferroelectric phases, which manifests itself in a well-defined double hysteresis loop in the P-E hysteresis curve.

    • Nengneng Luo
    • Li Ma
    • Shujun Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The regenerative capacity of the lung in response to injury deteriorates with aging. Here, Raslan et al. discover that aging-associated progressive lung fibrosis is accompanied by persistent activation of blood vessels. The authors identified the vascular YAP/TrkB axis as a putative driver of this process and potential therapeutic target.

    • Ahmed A. Raslan
    • Tho X. Pham
    • Giovanni Ligresti
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-20
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The impact of the charge density wave (CDW) state to the electronic structure in the Kagome superconductors AV3Sb5 remains unclear. Here, the authors observe CDW-induced Fermi surface reconstruction with a strongly anisotropic CDW gap and signatures of the electron-phonon coupling for all V-derived bands.

    • Hailan Luo
    • Qiang Gao
    • X. J. Zhou
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-8
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Polyethylene glycol has been widely utilized to functionalize nanomaterials in order to improve their biocompatibility. Here, the authors demonstrate that PEGylated nano-graphene oxide can elicit an inflammatory response, contradicting current literature.

    • Nana Luo
    • Jeffrey K. Weber
    • Guanghui Ma
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-10
  • The LHCb experiment at CERN has observed significant asymmetries between the decay rates of the beauty baryon and its CP-conjugated antibaryon, thus demonstrating CP violation in baryon decays.

    • R. Aaij
    • A. S. W. Abdelmotteleb
    • G. Zunica
    ResearchOpen Access
    Nature
    Volume: 643, P: 1223-1228
  • The collective-flow-assisted nuclear shape-imaging method images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris.

    • M. I. Abdulhamid
    • B. E. Aboona
    • M. Zyzak
    ResearchOpen Access
    Nature
    Volume: 635, P: 67-72
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Bacterial heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are bioactive natural products that are difficult to access chemically. Here, the authors identify a family of three related HTDKP-forming cytochrome P450s and engineer key amino acid residues to produce distinct diketopiperazines frameworks.

    • Chenghai Sun
    • Zhenyao Luo
    • Xudong Qu
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Using spin-entangled baryon–antibaryon pairs, the BESIII Collaboration reports on high-precision measurements of potential charge conjugation and parity (CP)-symmetry-violating effects in hadrons.

    • M. Ablikim
    • M. N. Achasov
    • J. H. Zou
    ResearchOpen Access
    Nature
    Volume: 606, P: 64-69
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Low complexity (LC) domains can drive the formation of both amyloid fibrils and protein droplets. Here, the authors identify reversible amyloid cores from the LC of hnRNPA1, based on which they elucidate the structural basis of reversible fibrillation and its interplay with hnRNPA1 droplet formation.

    • Xinrui Gui
    • Feng Luo
    • Dan Li
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-12
  • Lithium-rich layered oxides are promising cathode materials for next-generation batteries, but they suffer from long-standing problems such as voltage decay during cycling. Here the authors analyse the root cause of voltage decay and present a structure engineering strategy to mitigate the issue for a cobalt-free, lithium-rich layered oxide.

    • Dong Luo
    • He Zhu
    • Qi Liu
    Research
    Nature Energy
    Volume: 8, P: 1078-1087
  • It remains challenging on how to selectively control terahertz conductivity at surface from the bulk contribution in topological insulators. Here, Luo et al. discover and manipulate topologically enhanced surface transport due to helical spin structure using mid-infrared and terahertz ultrafast photoexcitations.

    • L. Luo
    • X. Yang
    • J. Wang
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-9
  • A collective excitation called Higgs mode may arise in multi-band superconductors via strong interband interaction, but it is yet to be accessed. Here, the authors observe a tunable coherent amplitude oscillation of the order parameter in Ba(Fe1−xCox)2As2, suggesting appearance and control of the Higgs mode by light tuning interband interaction.

    • C. Vaswani
    • J. H. Kang
    • J. Wang
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-9
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The anisotropic electrical and optical response of materials has allowed for the development of variety of sensors, memories and other interesting devices. Here, Qi et al turn their attention to the van der Waals antiferromagnetic insulator CrPS4, and demonstrate a very large, electrically tunable anisotropy in magnon transport, and present a multibit read-only memory based on this anisotropy.

    • Shaomian Qi
    • Di Chen
    • Jian-Hao Chen
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-8
  • A low-potential dual-side hydrogen production system is more efficient than water splitting but suffers from stability issues. Here, the authors report a self-reactivating PdCu catalyst that operates stably for 120 h, offering an alternative solution for energy-efficient hydrogen production.

    • Ming Yang
    • Yimin Jiang
    • Yuqin Zou
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-11
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The authors study CsV3Sb5 by nuclear quadrupole resonance. At ambient pressure, there are two superconducting gaps with line nodes in the smaller one. For pressures above Pc ~ 1.85 GPa, where the charge-density wave phase is completely suppressed, they observe fully-gapped superconductivity with broken rotational symmetry.

    • X. Y. Feng
    • Z. Zhao
    • Guo-qing Zheng
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8