Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 131 results
Advanced filters: Author: Zachary J. Williams Clear advanced filters
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history.

    • Daniel Taliun
    • Daniel N. Harris
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 590, P: 290-299
  • Determining the time evolution of reactions at the quantum mechanical level improves our understanding of molecular dynamics. Here, authors separate the breakup of water, one bond at a time, from other processes leading to the same final products and experimentally identify, separate, and follow step by step two breakup paths of the transient OD+ fragment.

    • Travis Severt
    • Zachary L. Streeter
    • Itzik Ben-Itzhak
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-9
  • Heterozygous loss-of-function mutations in the GRN gene are a major cause of hereditary frontotemporal dementia, and there is currently no treatment. Here, the authors report and utilize small molecule positive regulators of GRN expression to boost progranulin levels from the remaining functional GRN allele, thus restoring progranulin levels back to normal within the brain.

    • Rachel Tesla
    • Charlotte Guhl
    • Joachim Herz
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-20
  • Discovering molecular pathways that sensitize cells to poly(ADP-ribose) polymerase (PARP)- trapping inhibitors is important for anti-cancer therapy. Here, the authors report that inactivation of the CHD6 chromatin remodelling enzyme sensitizes cells to PARP inhibitors via reduced abasic site repair, PARP-1 accumulation on chromatin, and replication stress.

    • Luc Provencher
    • Wilson Nartey
    • Aaron A. Goodarzi
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-24
  • Artificial reefs provide important ecosystem services in marine environments. Accurate knowledge of the area covered by such reefs can help evaluate benefits and risks of such structures. This study describes the physical footprint of artificial reefs deployed in coastal waters of the United States.

    • Avery B. Paxton
    • D’amy N. Steward
    • J. Christopher Taylor
    Research
    Nature Sustainability
    Volume: 7, P: 140-147
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Wnt receptors are controlled by their ubiquitin-mediated proteolysis. The authors show that the USP46 deubiquitylase complex potentiates Wnt signaling in human cells, Xenopus, and zebrafish by inhibiting cell surface LRP6 degradation.

    • Victoria H. Ng
    • Zachary Spencer
    • Ethan Lee
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-13
  • Dense calcium imaging combined with co-registered high-resolution electron microscopy reconstruction of the brain of the same mouse provide a functional connectomics map of tens of thousands of neurons of a region of the primary cortex and higher visual areas.

    • J. Alexander Bae
    • Mahaly Baptiste
    • Chi Zhang
    ResearchOpen Access
    Nature
    Volume: 640, P: 435-447
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Subsidies for coastal management and tax advantages for high-income property owners dampen the negative effects of climate risks on coastal property values. Without subsidies or tax advantages market prices better reflect climate risks, but coastal gentrification could accelerate.

    • Dylan E. McNamara
    • Martin D. Smith
    • Craig E. Landry
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-16
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The authors highlight inconsistencies and divergencies in the literature reporting data on indirect calorimetry for studies on whole-body energy homeostasis, and propose harmonization of standards to facilitate data comparison and interpretation across different datasets.

    • Alexander S. Banks
    • David B. Allison
    • Juleen R. Zierath
    Reviews
    Nature Metabolism
    Volume: 7, P: 1765-1780
  • Spontaneous traveling cortical waves shape neural responses. Using a large-scale computational model, the authors show that transmission delays shape locally asynchronous spiking dynamics into traveling waves without inducing correlations and boost responses to external input, as observed in vivo.

    • Zachary W. Davis
    • Gabriel B. Benigno
    • Lyle Muller
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Richter’s Transformation is a treatment-resistant and fatal progression from Chronic Lymphocytic Leukemia (CLL) to an aggressive lymphoma. Here, the authors show that PRMT5 is upregulated months prior to and after transformation, PRMT5 overexpression in a CLL mouse model leads to increased risk of transformation, and that targeted PRMT5 inhibition prolongs survival and delays disease development.

    • Zachary A. Hing
    • Janek S. Walker
    • Rosa Lapalombella
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-21
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Materials for extreme environments can help to protect people, structures and the planet. Extreme temperatures in aeroplane engines, hypervelocity micrometeoroid impacts on satellites, high-speed machining of ceramics and strong radiation doses in nuclear reactors are just some examples of extreme conditions that materials need to withstand. In this Viewpoint, experts working on materials for different types of extreme environments discuss the most exciting advances, opportunities and bottlenecks in their fields.

    • Suhas Eswarappa Prameela
    • Tresa M. Pollock
    • Lori Graham-Brady
    Reviews
    Nature Reviews Materials
    Volume: 8, P: 81-88
  • Extending the therapeutic window for acute viral infections could save lives. Here, the authors show that combination treatment with a human monoclonal antibody and remdesivir initiated at 6 days post infection with Marburg virus provides 80% protection in non-human primates.

    • Robert W. Cross
    • Zachary A. Bornholdt
    • Thomas W. Geisbert
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-10
  • In this study, Hsu et al. show that inhibition of CDK7/12/13 attenuates maladaptive transcriptional activation in cultured cardiomyocytes and a mouse model of heart failure, suggesting that targeting the transcription machinery might be a therapeutic approach to treat heart failure with reduced ejection fraction.

    • Austin Hsu
    • Qiming Duan
    • Saptarsi M. Haldar
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-11
  • Some genes that are part of balanced translocations are reported as drivers for tumourigenesis. Here, the authors report a translocation involving MTCP1 in chronic lymphocytic leukemia and show that MTCP1 overexpression leads to the disease in a murine model.

    • Janek S. Walker
    • Zachary A. Hing
    • Rosa Lapalombella
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • Nsp15 is a uridine specific endoribonuclease present in all coronaviruses. Here, the authors determine the cryo-EM structures of SARS-CoV-2 Nsp15 in the apo and UTP-bound states, which together with biochemical experiments, mass spectrometry and molecular dynamics simulations provide insights into the catalytic mechanism of Nsp15 and its conformational dynamics.

    • Monica C. Pillon
    • Meredith N. Frazier
    • Robin E. Stanley
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-12