Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Naturally impaired side-chain shortening of aromatic 3-ketoacyl-CoAs reveals the biosynthetic pathway of plant acetophenones

Abstract

Acetophenones, which show scattered distribution across phylogenetically distant plants and fungi, play diverse roles in plant–plant, plant–insect, plant–microbiome and even animal–insect interactions. However, the enzymatic basis of acetophenone biosynthesis in plants remains unknown. Here we elucidate the complete biosynthetic pathway of picein (4-hydroxyacetophenone glucoside) from 4-coumaroyl-CoA using pear (Pyrus) as a study system. We demonstrate that in certain pear cultivars, the acetophenone moiety originates from an impaired side-chain shortening reaction of an aromatic 3-ketoacyl-CoA intermediate, a key step in the β-oxidative biosynthesis of benzoic acid. This impairment results from a loss-of-function mutation in a peroxisomal 3-ketoacyl-CoA thiolase. The accumulated aromatic 3-ketoacyl-CoA is subsequently hydrolysed by a thioesterase and undergoes spontaneous decarboxylation to yield the acetophenone moiety. This rare metabolic phenomenon highlights that not only neofunctionalization but also loss-of-function mutations can drive diversification in plant secondary metabolism. Forward genetic approaches are powerful to shed light on such ‘hidden’ or recessive pathways in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and quantification of picein in pear species.
Fig. 2: Genetic mapping and functional characterization of the picein accumulation locus.
Fig. 3: Functional validation of KAT in piceol and picein biosynthesis.
Fig. 4: The complete biosynthesis pathway of piceol.
Fig. 5: Phylogenetic analysis of pear piceol biosynthetic enzymes with their orthologues in plant and non-plant species.
Fig. 6: Causal mutations responsible for KAT loss of function.
Fig. 7: Isolation and functional verification of PiGT in pears.

Similar content being viewed by others

Data availability

RNA-seq and WGS data have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject accessions PRJNA1244835 and PRJNA1245614, respectively. For sequences reported in this paper, the following GenBank/EMBL accession numbers were assigned: PbKAT(XQS98849), PcKAT(XQS98850), PyCHD(XQS98848), PbTE(XQS98851), PbPiGT(XQS98852) and PcPiGT(XQS98853). Source data are provided with this paper.

References

  1. Dong, F. et al. Characterization of l-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. J. Plant Physiol. 169, 217–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Colonges, K. et al. Two main biosynthesis pathways involved in the synthesis of the floral aroma of the Nacional cocoa variety. Front. Plant Sci. 12, 681979 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Parent, G. J. et al. Hydroxyacetophenone defenses in white spruce against spruce budworm. Evol. Appl. 13, 62–75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Delvas, N., Bauce, É., Labbé, C., Ollevier, T. & Bélanger, R. Phenolic compounds that confer resistance to spruce budworm. Entomol. Exp. Appl. 141, 35–44 (2011).

    Article  CAS  Google Scholar 

  5. Stachel, S. et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624–629 (1985).

    Article  Google Scholar 

  6. Duban, M. E., Lee, K. & Lynn, D. G. Strategies in pathogenesis: mechanistic specificity in the detection of generic signals. Mol. Microbiol. 7, 637–645 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H. et al. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell https://doi.org/10.1016/j.cell.2022.05.016 (2022).

  8. Zubkov, F. I. & Kouznetsov, V. V. Traveling across life sciences with acetophenone–a simple ketone that has special multipurpose missions. Molecules 28, 370 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bihlet, A. R. et al. The efficacy and safety of a fixed-dose combination of apocynin and paeonol, APPA, in symptomatic knee OA: a double-blind, randomized, placebo-controlled, clinical trial. Osteoarthr. Cartil. 32, 952–962 (2024).

    Article  Google Scholar 

  10. Greener, M. How close are disease-modifying drugs for osteoarthritis? Prescriber 32, 9–12 (2021).

    Article  Google Scholar 

  11. Sumalatha, Y., Reddy, T. R., Reddy, P. P. & Satyanarayana, B. A simple and efficient synthesis of hypnotic agent, zolpidem and its related substances. ARKIVOC https://doi.org/10.3998/ark.5550190.0010.230 (2009).

  12. Catozzi, N. et al. Process for preparing cinacalcet. US patent 8,614,353 (2013).

  13. Polak, A. Oxiconazole, a new imidazole derivative. Evaluation of antifungal activity in vitro and in vivo. Arzneimittelforschung 32, 17–24 (1982).

    CAS  PubMed  Google Scholar 

  14. Ahmadpourmir, H. et al. Natural-derived acetophenones: chemistry and pharmacological activities. Nat. Prod. Bioprospect. 14, 28 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mageroy, M. H. et al. Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. Plant J. 81, 68–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Negrel, J. & Javelle, F. The biosynthesis of acetovanillone in tobacco cell-suspension cultures. Phytochemistry 71, 751–759 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Lapadatescu, C., Giniès, C., Le Quéré, J. L. & Bonnarme, P. Novel scheme for biosynthesis of aryl metabolites from l-phenylalanine in the fungus Bjerkandera adusta. Appl. Environ. Microbiol. 66, 1517–1522 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, K. et al. Genetic relationships and population structure of pears (Pyrus spp.) assessed with genome-wide SNPs detected by genotyping-by-sequencing. Hortic. Environ. Biotechnol. 60, 945–953 (2019).

    Article  CAS  Google Scholar 

  19. Wu, J. et al. Diversification and independent domestication of Asian and European pears. Genome Biol. 19, 77 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Westwood, M. N. & Bjornstad, H. O. Some fruit characteristics of interspecific hybrids and extent of self-sterility in Pyrus. Bull. Torrey Bot. Club 98, 22–24 (1971).

    Article  Google Scholar 

  21. Shirasawa, K., Itai, A. & Isobe, S. Chromosome-scale genome assembly of Japanese pear (Pyrus pyrifolia) variety ‘Nijisseiki’. DNA Res. 28, dsab001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu, J. et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 23, 396–408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, P. et al. A large-scale proteogenomic atlas of pear. Mol. Plant 16, 599–615 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Linsmith, G. et al. Pseudo-chromosome-length genome assembly of a double haploid ‘Bartlett’ pear (Pyrus communis L.). Gigascience 8, giz138 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shi, D. et al. Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Res. 29, 1889–1899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bell, R. L. Pears (Pyrus). Acta Hortic. 290, 657–700 (1991).

    Article  Google Scholar 

  27. Lin, L. Z. & Harnly, J. M. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.). J. Agric. Food Chem. 56, 9094–9101 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Colaric, M., Stampar, F. & Hudina, M. Changes in sugars and phenolics concentrations of Williams pear leaves during the growing season. Can. J. Plant Sci. 86, 1203–1208 (2006).

    Article  CAS  Google Scholar 

  29. Li, P., Zhang, Y., Einhorn, T. C. & Cheng, L. Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150, 339–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Zhai, R. et al. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). J. Exp. Bot. 67, 1275–1284 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Van Moerkercke, A., Schauvinhold, I., Pichersky, E., Haring, M. A. & Schuurink, R. C. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J. 60, 292–302 (2009).

    Article  PubMed  Google Scholar 

  32. Qualley, A. V., Widhalm, J. R., Adebesin, F., Kish, C. M. & Dudareva, N. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc. Natl Acad. Sci. USA 109, 16383–16388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adebesin, F., Widhalm, J. R., Lynch, J. H., McCoy, R. M. & Dudareva, N. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism. Plant J. 93, 905–916 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Dougherty, L., Singh, R., Brown, S., Dardick, C. & Xu, K. Exploring DNA variant segregation types in pooled genome sequencing enables effective mapping of weeping trait in Malus. J. Exp. Bot. 69, 1499–1516 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ban, S. & Xu, K. Identification of two QTLs associated with high fruit acidity in apple using pooled genome sequencing analysis. Hortic. Res. 7, 171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lackus, N. D., Schmidt, A., Gershenzon, J. & Köllner, T. G. A peroxisomal β-oxidative pathway contributes to the formation of C6-C1 aromatic volatiles in poplar. Plant Physiol. 186, 891–909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ødum, M. T. et al. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models. Nucleic Acids Res. 52, W215–W220 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chou, K. C. & Shen, H. B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5, e11335 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, G., Weiss, S. J. & Levine, R. L. Methionine oxidation and reduction in proteins. Biochim. Biophys. Acta 1840, 901–905 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Pye, V. E., Christensen, C. E., Dyer, J. H., Arent, S. & Henriksen, A. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J. Biol. Chem. 285, 24078–24088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sundaramoorthy, R. et al. The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation. J. Mol. Biol. 359, 347–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, X. et al. RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol. 21, 226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho, H. et al. Translational control of phloem development by RNA G-quadruplex-JULGI determines plant sink strength. Nat. Plants 4, 376–390 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Speeckaert, N., El Jaziri, M., Baucher, M. & Behr, M. UGT72, a major glycosyltransferase family for flavonoid and monolignol homeostasis in plants. Biology 11, 441 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansen, P. E. Structural studies of β-diketones and their implications on biological effects. Pharmaceuticals 14, 1189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mageroy, M. H. et al. A conifer UDP-sugar dependent glycosyltransferase contributes to acetophenone metabolism and defense against insects. Plant Physiol. 175, 641–651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morita, H. et al. A structure-based mechanism for benzalacetone synthase from Rheum palmatum. Proc. Natl Acad. Sci. USA 107, 669–673 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Austin, M. B. & Noel, J. P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Kaur, R. et al. Keto-enol tautomerism of temperature and pH sensitive hydrated curcumin nanoparticles: their role as nanoreactors and compatibility with blood cells. J. Agric. Food Chem. 66, 11974–11980 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Bhatia, N. K. et al. Effect of pH and temperature on conformational equilibria and aggregation behaviour of curcumin in aqueous binary mixtures of ethanol. RSC Adv. 6, 103275–103288 (2016).

    Article  CAS  Google Scholar 

  52. Ruan, X. et al. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles. Molecules 16, 8874–8893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu, L. et al. Establishing biosynthetic pathway for the production of p-hydroxyacetophenone and its glucoside in Escherichia coli. Metab. Eng. 76, 110–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Yan, Q. et al. Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity. Nat. Commun. 13, 1619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hanko, E. K. R. et al. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production. Metab. Eng. 48, 52–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Goh, E. B. et al. Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metab. Eng. 26, 67–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Yan, Q. et al. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metab. Eng. 61, 335–343 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goh, E. B., Baidoo, E. E., Keasling, J. D. & Beller, H. R. Engineering of bacterial methyl ketone synthesis for biofuels. Appl. Environ. Microbiol. 78, 70–80 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu, G. et al. Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiol. 154, 67–77 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Niwa, M. & Saburi, Y. Vanilloyl acetic acid as an unstable intermediate from β-hydroxypropiovanillone to acetovanillone. Holzforschung 56, 360–362 (2002).

    Article  CAS  Google Scholar 

  61. Cermjani, E., Deckers, C., Maskos, M. & Rehm, T. H. Selective decarboxylative fluorination of β-keto acids in aqueous media: 19F-NMR-assisted batch optimization and transfer to continuous flow. Chemistry 31, e202404435 (2025).

  62. Higuchi, Y. et al. The catabolic system of acetovanillone and acetosyringone in Sphingobium sp. strain SYK-6 useful for upgrading aromatic compounds obtained through chemical lignin depolymerization. Appl. Environ. Microbiol. 88, e0072422 (2022).

  63. Kornberg, A., Ochoa, S. & Mehler, A. H. Spectrophotometric studies on the decarboxylation of beta-keto acids. J. Biol. Chem. 174, 159–172 (1948).

    Article  CAS  PubMed  Google Scholar 

  64. Beuerle, T. & Pichersky, E. Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal. Biochem. 302, 305–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Y. et al. Biosynthesis of the dihydrochalcone sweetener trilobatin requires phloretin glycosyltransferase2. Plant Physiol. 184, 738–752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, M. et al. Determination of bioactive substances in 27 edible flowers based on LC–MS/MS. Sci. Hortic. 337, 113517 (2024).

  67. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karimi, M., Inzé, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Hellens, R. P. et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank J. Zhao and W. Cao (Horticulture Science Research Center, Northwest A&F University, Yangling, China) for professional technical assistance with LC–MS/MS analysis and Y. Chen and Y. Xin (College of Horticulture, Northwest A&F University, Yangling, China) for support in plant material collection. This work was supported by the National Natural Science Foundation of China (to R.Z., 32102450), the earmarked fund for China Agricultural Research System (to L.X., CARS 28) and the Weinan Experimental Station foundation of Northwest A&F University (to L.X., 2024WNXNZX-4).

Author information

Authors and Affiliations

Authors

Contributions

R.Z., P.L., Y.X., X.D. and L.X. designed the experiments. R.Z. performed most of the experiments. H.Z. and S.Z. assisted with transient experiments on N. benthamiania. J.Z., F.Z. and W.C. assisted with transcriptome assembly and LC–MS analyses. Y.Y., Z.W. and C.Y. assisted with hybrid investigation. R.Z., P.L. and R.A. analysed the data. R.Z., Q.G., F.M. and L.X. wrote the paper.

Corresponding authors

Correspondence to Pengmin Li or Lingfei Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks John MacKay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 HPLC chromatogram of acetophenones.

HPLC chromatogram of partial hydrolysis products of picein (a), standard piceol (b), standard 3-hydroxyacetophenone (c), standard 2-hydroxyacetophenone (d) and standard picein (e).

Extended Data Fig. 2 Enzyme activities involved in the picein formation in different pear cultivars.

(a) Proposed biosynthetic pathway of picein from 4-Coumaryl-CoA (4CA-CoA) in pear leaves. Enzymatic activities responsible for phase I (b) and phase II (c) were assessed in crude enzyme extracts from young fully expanded pear leaves. Data are means ± SEM from three biological replicates, sample size for each replicate is 10 leaves over 5 independent plants.

Extended Data Fig. 3

Schematic representation for transient expression of KAT genes combined with isotope feeding in tissue-cultured pear leaves.

Extended Data Fig. 4 pH sensitive keto-enol tautomerization of piceol.

(a) The enol/keto ratio of piceol presented as LC-MS/MS chromatogram produced in reaction buffer with different pH environments. (b) The enol/keto ratio of 4HAP (produced in buffer with pH=8.5) incubated in the buffers with different pH for 2 h in room temperature.

Extended Data Fig. 5 Subcellular location of PyCHD, PbKAT and PbTE in Nicotiana benthamiana leaves.

N-terminal GFP- and mCherry-tagged constructs of PyCHD, PbKAT, PbTE, and peroxisomal marker px-rk were transiently co-expressed. Fluorescence signals were visualized using confocal microscopy, with GFP (green), mCherry (magenta), and chlorophyll autofluorescence (blue) shown in separate panels. The overlay of GFP, mCherry and chlorophyll autofluorescence signals in the boxed-areas are enlarged to show details in Merged panel.

Extended Data Fig. 6 Enzymatic activities of KATs from two F1 progenies.

(a) Structure and location of the 5’UTR PRG4, 3’UTR deletion and five Amino acid substitutions that co-segregated with the picein trait in two F1 progenies. (b-c) In vitro enzyme assays showing the content of piceol (b) and 4HBA (c) produced by different genotype KATs in two F1 progenies. Data are presented as means ± SEM from three independent experiments. The P values were calculated via two-tailed Student’s t-tests.

Extended Data Fig. 7 Glycosylation ability for piceol (phase II) in tender leaves (TL) and fully expanded young leaves (FL) of surveyed cultivars.

Phase II enzyme activity was measured in vitro using crude enzyme extracts from pear leaves with piceol and UDP-glucose as the substrates. Data are means ± SEM from three biological replicates, sample size for each replicate is 10 leaves over 5 independent plants.

Extended Data Fig. 8 Schematic representations of the segregation of single-nucleotide variants (SNVs) linked to the picein accumulation trait in F1 plants from interspecific crosses.

(a) Cross between ‘Dangshansu’ and ‘Abate Fetel’. (b) Cross between ‘Dangshansu’ and ‘Yuluxiang’ / ‘SuliOP729’. The SNVs <nn × np> and <nn> × <pn> are highlighted in black, which are informative for mapping the recessive picein accumulation trait.

Extended Data Fig. 9 Purification of recombinant enzymes involved in acetophenone biosynthesis.

(a) The constructs used for the purification of 6xHis-SUMO tagged target genes including KATs, PyCHD, PbTE and PyCNL(for producing 4CA-CoA) and (b) the purification results indicated by SDS-gel (performed once).

Source data

Extended Data Fig. 10 Purification of recombinant enzymes involved in piceol glycosylation.

(a) The constructs used for purification of 6xHis tagged PiGT and (b) the purification results indicated by by SDS-gel (performed once).

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Reporting Summary

Supplementary Dataset 1

InDel markers for fine-mapping ap locus (reference genome: BaDH).

Supplementary Dataset 2

List of gene accessions used in this study.

Source data

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 7

Unmodified gels.

Source Data Extended Data Fig. 9

Unmodified gels.

Source Data Extended Data Fig. 10

Unmodified gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, R., Zhang, H., Xie, Y. et al. Naturally impaired side-chain shortening of aromatic 3-ketoacyl-CoAs reveals the biosynthetic pathway of plant acetophenones. Nat. Plants 11, 1903–1919 (2025). https://doi.org/10.1038/s41477-025-02082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02082-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing