Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The bound origin of low-mass stellar binaries

Abstract

Most main sequence stars, unlike our Sun, belong to multiple systems containing two or more stars. How and when these multiples come together and become bound is uncertain, as the earliest stages of star formation are difficult to resolve. Here we analyse simulations of star cluster formation in Milky Way-like conditions, including all key physics and stellar feedback mechanisms, to understand how multiple systems form. We show that ~70–80% of binaries are gravitationally bound from the moment the second star forms. Binaries evolve and accrete together, which will affect their planetary systems and chemical evolution. Half of the binaries are disrupted by the end of the star-formation epoch, such that ~40% of the final single stars belonged to a multiple at some point, with implications for the stellar initial mass function. Formation in multiples is the dominant mode of star formation, accounting for at least 57% of stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example binaries and surrounding gas at formation.
Fig. 2: Boundedness of binary pairs at formation.
Fig. 3: Distribution of binary velocities and formation times.
Fig. 4: Schematic summarizing basic statistics on binary formation and survival.
Fig. 5: Ratio of the number of surviving to disrupted binaries versus the final mass of the binary stars.

Data availability

The full snapshots, containing gas and sink data from the underlying STARFORGE simulations, are available upon request to M.Y.G. at mgrudic@flatironinstitute.org.

Code availability

The scripts used to compute halos, identify multiples and generate figures are published as a Code Ocean capsule at https://doi.org/10.24433/CO.6648239.v1. We made use of ChatGPT for code refactoring. This project made use of the open-source package pytreegrav, available via GitHub at https://github.com/mikegrudic/pytreegrav, for the calculation of tidal forces. The open-source package Meshoid, available via GitHub at https://github.com/mikegrudic/meshoid, was used for the visualization in Fig. 1. STARFORGE uses a numerical framework implemented in the Gizmo code. The public version of the Gizmo code, which includes self-gravity, MHD, radiation transfer and various other physics modules is available at https://bitbucket.org/phopkins/gizmo-public/src/master/.

References

  1. Dunham, M. M. et al. Evolution of protostars: insights from ten years of infrared surveys with Spitzer and Herschel. In Protostars and Planets VI (eds Beuther, H. et al.) 195–218 (Univ. of Arizona Press, 2014).

  2. Pineda, J. E. et al. From bubbles and filaments to cores and disks: gas gathering and growth of structure leading to the formation of stellar systems. In Protostars and Planets VII Vol. 534 (eds Inutsuka, S. et al.) 233 (Astronomical Society of the Pacific, 2023).

  3. Offner, S. S. R. et al. The origin and evolution of multiple star systems. In Astronomical Society of the Pacific Conference Series (eds Inutsuka, S. et al.) Vol. 534, 275 (Astronomical Society of the Pacific, 2023).

  4. Chevance, M. et al. The molecular cloud lifecycle. Space Sci. Rev. 216, 50 (2020).

    Article  ADS  Google Scholar 

  5. Bastian, N. et al. Evidence for environmentally dependent cluster disruption in M83. Mon. Not. R. Astron. Soc. 417, L6–L10 (2011).

    Article  ADS  Google Scholar 

  6. Offner, S. S. R. et al. The origin and universality of the stellar initial mass function. In Protostars and Planets VI (eds Beuther, H. et al.) 53–75 (Univ. of Arizona Press, 2014).

  7. Guszejnov, D. et al. Effects of the environment and feedback physics on the initial mass function of stars in the STARFORGE simulations. Mon. Not. R. Astron. Soc. 515, 4929–4952 (2022).

    Article  ADS  Google Scholar 

  8. Guszejnov, D. et al. Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations. Mon. Not. R. Astron. Soc. 518, 4693–4712 (2023).

    Article  ADS  Google Scholar 

  9. Iben, J. I. & Tutukov, A. V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. Ser. 54, 335–372 (1984).

    Article  ADS  Google Scholar 

  10. Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. Lett. 507, L59–L62 (1998).

    Article  ADS  Google Scholar 

  11. Portegies Zwart, S. F. & McMillan, S. L. W. Black hole mergers in the Universe. Astrophys. J. Lett. 528, L17–L20 (2000).

    Article  ADS  Google Scholar 

  12. Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444 (2012).

    Article  ADS  Google Scholar 

  13. Conroy, C. & Kratter, K. M. Runaway stars and the escape of ionizing radiation from high-redshift galaxies. Astrophys. J. 755, 123 (2012).

    Article  ADS  Google Scholar 

  14. Duchêne, G. & Kraus, A. Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269–310 (2013).

    Article  ADS  Google Scholar 

  15. Rafikov, R. R. Building Tatooine: suppression of the direct secular excitation in Kepler circumbinary planet formation. Astrophys. J. Lett. 764, L16 (2013).

    Article  ADS  Google Scholar 

  16. Moe, M. & Kratter, K. M. Impact of binary stars on planet statistics—I. Planet occurrence rates and trends with stellar mass. Mon. Not. R. Astron. Soc. 507, 3593–3611 (2021).

    Article  ADS  Google Scholar 

  17. Schnee, S. et al. An observed lack of substructure in starless cores. Astrophys. J. 718, 306–313 (2010).

    Article  ADS  Google Scholar 

  18. Bate, M. R. Predicting the properties of binary stellar systems: the evolution of accreting protobinary systems. Mon. Not. R. Astron. Soc. 314, 33–53 (2000).

    Article  ADS  Google Scholar 

  19. Bate, M. R. Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 419, 3115–3146 (2012).

    Article  ADS  Google Scholar 

  20. Krumholz, M. R., Klein, R. I. & McKee, C. F. Radiation-hydrodynamic simulations of the formation of Orion-like star clusters. II. The initial mass function from winds, turbulence, and radiation. Astrophys. J. 754, 71 (2012).

    Article  ADS  Google Scholar 

  21. Li, P. S., Klein, R. I. & McKee, C. F. Formation of stellar clusters in magnetized, filamentary infrared dark clouds. Mon. Not. R. Astron. Soc. 473, 4220–4241 (2017).

    Article  ADS  Google Scholar 

  22. Lee, A. T., Offner, S. S. R., Kratter, K. M., Smullen, R. A. & Li, P. S. The formation and evolution of wide-orbit stellar multiples in magnetized clouds. Astrophys. J. 887, 232 (2019).

    Article  ADS  Google Scholar 

  23. Guszejnov, D. et al. Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations. Mon. Not. R. Astron. Soc. 518, 4693–4712 (2022).

    Article  ADS  Google Scholar 

  24. Kuruwita, R. L. & Haugbølle, T. The contribution of binary star formation via core fragmentation on protostellar multiplicity. Astron. Astrophys. 674, A196 (2023).

    Article  ADS  Google Scholar 

  25. Hoyle, F. On the fragmentation of gas clouds into galaxies and stars. Astrophys. J. 118, 513–528 (1953).

    Article  ADS  Google Scholar 

  26. Tsuribe, T. & Inutsuka, S.-I. Criteria for fragmentation of rotating isothermal clouds. I. Semianalytic approach. Astrophys. J. 526, 307–313 (1999).

    Article  ADS  Google Scholar 

  27. Boss, A. P., Fisher, R. T., Klein, R. I. & McKee, C. F. The Jeans condition and collapsing molecular cloud cores: filaments or binaries? Astrophys. J. 528, 325–335 (2000).

    Article  ADS  Google Scholar 

  28. Padoan, P. & Nordlund, Å The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576, 870–879 (2002).

    Article  ADS  Google Scholar 

  29. Fisher, R. T. Single and Multiple Star Formation in Turbulent Molecular Cloud Cores. PhD thesis, University of California, Berkeley (2002).

  30. Offner, S. S. R., Kratter, K. M., Matzner, C. D., Krumholz, M. R. & Klein, R. I. The formation of low-mass binary star systems via turbulent fragmentation. Astrophys. J. 725, 1485–1494 (2010).

    Article  ADS  Google Scholar 

  31. Kuffmeier, M., Calcutt, H. & Kristensen, L. E. The bridge: a transient phenomenon of forming stellar multiples. Sequential formation of stellar companions in filaments around young protostars. Astron. Astrophys. 628, A112 (2019).

    Article  ADS  Google Scholar 

  32. Rozner, M., Generozov, A. & Perets, H. B. Binary formation through gas-assisted capture and the implications for stellar, planetary, and compact object evolution. Mon. Not. R. Astron. Soc. 521, 866–880 (2023).

    Article  ADS  Google Scholar 

  33. Cournoyer-Cloutier, C. et al. Implementing primordial binaries in simulations of star cluster formation with a hybrid MHD and direct N-body method. Mon. Not. R. Astron. Soc. 501, 4464–4478 (2020).

    Article  ADS  Google Scholar 

  34. Grudić, M. Y. et al. The dynamics and outcome of star formation with jets, radiation, winds, and supernovae in concert. Mon. Not. R. Astron. Soc. 512, 216–232 (2022).

    Article  ADS  Google Scholar 

  35. Lada, C. J. & Dame, T. M. The mass–size relation and the constancy of GMC surface densities in the Milky Way. Astrophys. J. 898, 3 (2020).

    Article  ADS  Google Scholar 

  36. Larson, R. B. Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981).

    Article  ADS  Google Scholar 

  37. Chevance, M. et al. The life and times of giant molecular clouds. In Protostars and Planets VII Vol. 534 (eds Inutsuka, S. et al.) 1–37 (Astronomical Society of the Pacific, 2023).

  38. Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E. & Troland, T. H. Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725, 466–479 (2010).

    Article  ADS  Google Scholar 

  39. Grudić, M. Y. et al. A model for the formation of stellar associations and clusters from giant molecular clouds. Mon. Not. R. Astron. Soc. 506, 3239–3258 (2021).

    Article  ADS  Google Scholar 

  40. Kuhn, M. A. et al. The spatial structure of young stellar clusters. I. Subclusters. Astrophys. J. 787, 107 (2014).

    Article  ADS  Google Scholar 

  41. Gouliermis, D. A. Unbound young stellar systems: star formation on the loose. Publ. Astron. Soc. Pac. 130, 072001 (2018).

    Article  ADS  Google Scholar 

  42. Ward, J. L., Kruijssen, J. M. D. & Rix, H.-W. Not all stars form in clusters—Gaia-DR2 uncovers the origin of OB associations. Mon. Not. R. Astron. Soc. 495, 663–685 (2020).

    Article  ADS  Google Scholar 

  43. Guszejnov, D., Hopkins, P. F. & Krumholz, M. R. Protostellar feedback in turbulent fragmentation: consequences for stellar clustering and multiplicity. Mon. Not. R. Astron. Soc. 468, 4093–4106 (2017).

    Article  ADS  Google Scholar 

  44. Kristensen, L. E. & Dunham, M. M. Protostellar half-life: new methodology and estimates. Astron. Astrophys. 618, A158 (2018).

    Article  ADS  Google Scholar 

  45. Moe, M. & Kratter, K. M. Dynamical formation of close binaries during the pre-main-sequence phase. Astrophys. J. 854, 44 (2018).

    Article  ADS  Google Scholar 

  46. Farias, J. P., Offner, S. S. R., Grudić, M. Y., Guszejnov, D. & Rosen, A. L. Stellar populations in STARFORGE: the origin and evolution of star clusters and associations. Mon. Not. R. Astron. Soc. 527, 6732–6751 (2024).

    Article  ADS  Google Scholar 

  47. Farias, J. P., Offner, S. S. R., Kerr, R. & Grudić, M. Y. Stellar populations in STARFORGE II: comparison with observations. Mon. Not. R. Astron. Soc. 541, 101–115 (2025).

    Article  ADS  Google Scholar 

  48. Cournoyer-Cloutier, C. et al. Massive star cluster formation with binaries. I. Evolution of binary populations. Astrophys. J. 977, 203 (2024).

    Article  ADS  Google Scholar 

  49. Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    Article  ADS  Google Scholar 

  50. Winters, J. G. et al. The Solar Neighborhood. XLV. The stellar multiplicity rate of M dwarfs within 25 pc. Astron. J. 157, 216 (2019).

    Article  ADS  Google Scholar 

  51. Tokovinin, A. & Moe, M. Formation of close binaries by disc fragmentation and migration, and its statistical modelling. Mon. Not. R. Astron. Soc. 491, 5158–5171 (2020).

    Article  ADS  Google Scholar 

  52. Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729–787 (1975).

    Article  ADS  Google Scholar 

  53. Padoan, P., Pan, L., Juvela, M., Haugbølle, T., & Nordlund, A. The origin of massive stars: the inertial-inflow model. Astrophys. J. 900, 82 (2020).

    Article  ADS  Google Scholar 

  54. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  55. Hopkins, P. F. & Raives, M. J. Accurate, meshless methods for magnetohydrodynamics. Mon. Not. R. Astron. Soc. 455, 51–88 (2016).

    Article  ADS  Google Scholar 

  56. Grudić, M. Y., Guszejnov, D., Hopkins, P. F., Offner, S. S. R. & Faucher-Giguère, C.-A. STARFORGE: towards a comprehensive numerical model of star cluster formation and feedback. Mon. Not. R. Astron. Soc. 506, 2199–2231 (2021).

    Article  ADS  Google Scholar 

  57. Klessen, R. S. & Burkert, A. The formation of stellar clusters: Gaussian cloud conditions. I. Astrophys. J. Suppl. Series 128, 287 (2000).

    Article  ADS  Google Scholar 

  58. Bate, M. R., Bonnell, I. A. & Bromm, V. The formation of a star cluster: predicting the properties of stars and brown dwarfs. Mon. Not. R. Astron. Soc. 339, 577–599 (2003).

    Article  ADS  Google Scholar 

  59. Bate, M. R., Bonnell, I. A. & Price, N. M. Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 277, 362–376 (1995).

    Article  ADS  Google Scholar 

  60. Offner, S. S. R., Klein, R. I., McKee, C. F. & Krumholz, M. R. The effects of radiative transfer on low-mass star formation. Astrophys. J. 703, 131–149 (2009).

    Article  ADS  Google Scholar 

  61. Grudić, M. Y. & Guszejnov, D. MakeCloud. GitHub https://github.com/mikegrudic/MakeCloud (2021).

  62. Ostriker, E. C., Stone, J. M. & Gammie, C. F. Density, velocity, and magnetic field structure in turbulent molecular cloud models. Astrophys. J. 546, 980–1005 (2001).

    Article  ADS  Google Scholar 

  63. Bate, M. R. Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation. Mon. Not. R. Astron. Soc. 392, 590–616 (2009).

    Article  ADS  Google Scholar 

  64. Grishin, E., Perets, H. B., Zenati, Y. & Michaely, E. Generalized Hill-stability criteria for hierarchical three-body systems at arbitrary inclinations. Mon. Not. R. Astron. Soc. 466, 276–285 (2017).

    Article  ADS  Google Scholar 

  65. Offner, S. S. R., Taylor, J. & Grudíc, M. Y. The life and times of star-forming cores: an analysis of dense gas in the STARFORGE simulations. Astrophys. J. 982, 138 (2025).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Farias for helpful comments and discussions. A.G. was supported at the Technion by a Zuckerman Fellowship. A.G., S.S.R.O. and K.M.K. acknowledge support from NSF AAG 2407522. S.S.R.O. also acknowledges support from a Peter O’Donnell Research Fellowship and a Donald Harrington Faculty Fellowship. We acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computational resources that have contributed to the research results reported within this Article (http://www.tacc.utexas.edu).

Author information

Authors and Affiliations

Authors

Contributions

A.G. developed code for multiple and gas halo identification, with help from D.G., and carried out the analysis. M.Y.G. ran the STARFORGE simulation models. S.S.R.O. provided expertise related to the STARFORGE simulations and facilitated the analysis. A.G., S.S.R.O., K.M.K. and H.B.P. contributed to the interpretation and discussion of the results and writing and editing of the paper.

Corresponding author

Correspondence to Aleksey Generozov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks G. N. Dremova, Francesco Flammini Dotti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Early evolution of orbital elements and masses for example binaries.

Early evolution of the semi-major axes (top), eccentricities (middle) for example binaries. When the binary is bound, the eccentricity and semi-major axis are a thick, brown line. If the stars’ are bound to other objects their orbital elements are thin orange or purple lines. For reference, we show the stars’ gravitational softening length as a horizontal gray line in the top panels. The bottom panels show the mass evolution for these binaries. The solid lines show the mass of each star and its halo, while the dashed lines show the masses of the stars alone.

Extended Data Fig. 2 Cumulative distribution of the delay from formation of stars to their first identification in a (persistent) multiple system (binary, triple, or quadruple).

Each coloured line corresponds to 1 of 10 logarithmically spaced mass bins, where stars are binned by their final masses. Persistent multiples are those that survive for more than one snapshot and at least one period. Note that many low mass stars are never in multiples, so the maximum cumulative fraction remains below one.

Extended Data Fig. 3 Bound from birth fraction versus mass for surviving and non-surviving binaries.

The fraction is shown with open, blue circles (filled, orange triangles) for surviving (non-surviving) binaries. The mass is the maximum of the two stars’ final masses. The error bars show the standard deviation, from the Bayesian formula \(\sqrt{\frac{(N-k+1)(k+1)}{(N+3){(N+2)}^{2}}}\), where k is the number of bound binaries and N is the total number of binaries in the mass bin. From left to right k is 194, 306, 157, 16, 1 for the survivors and 117, 259, 182, 86, 6 for the non-survivors. From left to right N is 224, 397, 251, 75, 10 for the survivors and 150, 331, 282, 145, 18 for the non-survivors. While high mass stars tend to form in multiple systems, many of these are disrupted by exchanges, leading to a decline in the overall bound-from-birth fraction with mass.

Extended Data Fig. 4 Ratio between maximum gas halo mass and the final stellar mass.

Rescaled probability density (orange) and CDF (blue) of the ratio between the maximum gas halo mass and the final stellar mass for all of the stars in the simulation for ft = 1 (top left), ft = 8 (top right), and ft = 0.082 (bottom). Note the different axis ranges in the bottom panel.

Extended Data Fig. 5 Stellar initial mass function (IMF).

The blue histogram shows the overall IMF, while the green histogram shows the IMF of singles that were in binaries at some point. The latter has a flatter slope above 0.3 M, as indicated by the power-law fits (dashed blue and green lines). The flatter slope is comparable to that of the IMF of all stars in the simulation (gray histogram). The dash-dotted orange histogram shows the IMF of singles that were in higher multiples, but not in binaries (indicating they are outer companions). The solid orange histogram shows the IMF of stars that were never in multiple systems.

Extended Data Table 1 Summary of binary statistics for simulations with different virial parameters and metalicities

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Generozov, A., Offner, S.S.R., Kratter, K.M. et al. The bound origin of low-mass stellar binaries. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-025-02686-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing