Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sonosensitive diphenylalanine-based broad-spectrum antimicrobial peptide

Abstract

The antimicrobial effect of antimicrobial peptides is typically slow; they can be rapidly biodegraded and often have non-selective toxicity and elaborate sequences. Here we report a short peptide that is activated by ultrasound, that shows high broad-spectrum antibacterial efficiency (>99%) against clinically isolated methicillin-resistant bacteria (specifically, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Enterobacter cancerogenus and Pseudomonas aeruginosa) with 15 min of ultrasound irradiation, and that has negligible toxicity and low self-antibacterial activity. We selected the peptide, FFRKSKEK (a segment from the human host-defence LL-37 peptide), from a library of peptides with piezoelectric diphenylalanine (FF) sequences, low toxicity, hydrophobicity and net positive charge. We show via all-atom molecular dynamics simulations that ultrasound amplifies the membrane-penetrating ability of peptides with FF sequences and that its piezoelectric polarization generates reactive-oxygen species and disturbs bacterial electron-transport chains. In a goat model of hard-to-treat intervertebral infection, the sonosensitive peptide led to better outcomes than vancomycin. Antimicrobial peptides activated by ultrasound may offer a clinically relevant strategy for combating antibiotic-resistant infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exploration of multiple FF-based peptide sonosensitizers’ properties.
Fig. 2: Molecular dynamics simulations and experiments verification of peptide/membrane interaction.
Fig. 3: Multiple explorations on the sonosensitive mechanism of peptides.
Fig. 4: Antibacterial and biocompatible properties of FFRK8 + US in vitro and in vivo.
Fig. 5: Anti-infection of sonosensitive peptide for MRSA-infected IVD in goats.
Fig. 6: Histological analysis of IVD and related adjacent tissues in goats.

Similar content being viewed by others

Data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 543, 15 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Wanted: a reward for antibiotic development. Nat. Biotechnol. 36, 555 (2018).

  3. Hancock, R. E. W., Alford, M. A. & Haney, E. F. Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat. Rev. Microbiol. 19, 786–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Ji, S. et al. Antimicrobial peptides: an alternative to traditional antibiotics. Eur. J. Med. Chem. 265, 116072 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Gagnon, M. C. et al. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry 56, 1680–1695 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, Y., Chen, Y., Song, Z., Tan, Z. & Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug Deliv. Rev. 170, 261–280 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Mourtada, R. et al. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat. Biotechnol. 37, 1186–1197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thapa, R. K., Diep, D. B. & Tønnesen, H. H. Topical antimicrobial peptide formulations for wound healing: current developments and future prospects. Acta Biomater. 103, 52–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, Y. et al. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano 15, 10628–10639 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Lo, P. C. et al. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 49, 1041–1056 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Valsami-Jones, E. & Lynch, I. NANOSAFETY. How safe are nanomaterials? Science 350, 388–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Zelenovskii, P. S. et al. 2D layered dipeptide crystals for piezoelectric applications. Adv. Funct. Mater. 31, 2102524 (2021).

    Article  CAS  Google Scholar 

  13. Yan, X., Zhu, P. & Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Cottle, L. & Riordan, T. Infectious spondylodiscitis. J. Infect. 56, 401–412 (2008).

    Article  PubMed  Google Scholar 

  15. Gouliouris, T., Aliyu, S. H. & Brown, N. M. Spondylodiscitis: update on diagnosis and management. J. Antimicrob. Chemother. 65, 11–24 (2010). Suppl 3, iii.

    Article  Google Scholar 

  16. Urban, J. P. & Roberts, S. Degeneration of the intervertebral disc. Arthritis Res. Ther. 5, 120–130 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nagashima, H. Spinal infections. In Brain and Spine Surgery in the Elderly. (eds Berhouma, M. & Krolak-Salmon, P.) 305–327 (Springer, 2017).

  18. Zhu, Q. et al. Transport of vancomycin and cefepime into human intervertebral discs: quantitative analyses. Spine 44, E992–e999 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bue, M. et al. Vancomycin concentrations in the cervical spine after intravenous administration: results from an experimental pig study. Acta Orthop. 89, 683–688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jackson, A. R. et al. Diffusion of antibiotics in intervertebral disc. J. Biomech. 76, 259–262 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herren, C. et al. Spondylodiscitis: diagnosis and treatment options. Dtsch. Arztebl. Int. 114, 875–882 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Berbari, E. F. et al. 2015 infectious diseases society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin. Infect. Dis. 61, e26–e46 (2015).

    Article  PubMed  Google Scholar 

  23. Scott, M. G., Davidson, D. J., Gold, M. R., Bowdish, D. & Hancock, R. E. W. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169, 3883–3891 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Chemes, L. B., Alonso, L. G., Noval, M. G. & de Prat-Gay, G. Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. Methods Mol. Biol. 895, 387–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, D. et al. Biomolecular piezoelectric materials: from amino acids to living tissues. Adv. Mater. 32, e1906989 (2020).

    Article  PubMed  Google Scholar 

  26. Standard test method for analysis of hemolytic properties of nanoparticles. ASTM E2524-08 (ASTM, 2013).

  27. Piggot, T. J., Holdbrook, D. A. & Khalid, S. Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J. Phys. Chem. B 115, 13381–13388 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Man, V. H. et al. Molecular mechanism of ultrasound interaction with a blood brain barrier model. J. Chem. Phys. 153, 045104 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Man, V. H., Li, M. S., Wang, J., Derreumaux, P. & Nguyen, P. H. Interaction mechanism between the focused ultrasound and lipid membrane at the molecular level. J. Chem. Phys. 150, 215101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, L. T., Haney, E. F. & Vogel, H. J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29, 464–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Skogman, M. E., Vuorela, P. M. & Fallarero, A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J. Antibiot. 65, 453–459 (2012).

    Article  CAS  Google Scholar 

  33. Qiao, Y. et al. Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria. Nat. Commun. 13, 2461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su, R. et al. Nano-ferroelectric for high efficiency overall water splitting under ultrasonic vibration. Angew. Chem. Int. Ed. Engl. 58, 15076–15081 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Torres, M. D. T. et al. Mining for encrypted peptide antibiotics in the human proteome. Nat. Biomed. Eng. 6, 67–75 (2022).

    Article  PubMed  Google Scholar 

  36. Belenky, P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13, 968–980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hicks, K. A. et al. Structural and biochemical characterization of 6-hydroxynicotinic acid 3-monooxygenase, a novel decarboxylative hydroxylase involved in aerobic nicotinate degradation. Biochemistry 55, 3432–3446 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Khakhina, S. et al. Control of plasma membrane permeability by ABC transporters. Eukaryot. Cell 14, 442–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawase, H. et al. Extracellular glutamate concentration increases linearly in proportion to decreases in residual cerebral blood flow after the loss of membrane potential in a rat model of ischemia. J. Neurosurg. Anesthesiol. 33, 356–362 (2021).

    Article  PubMed  Google Scholar 

  40. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Ramos-Martín, F. & D’Amelio, N. Biomembrane lipids: when physics and chemistry join to shape biological activity. Biochimie 203, 118–138 (2022).

    Article  PubMed  Google Scholar 

  42. Goto, A., Mizuike, A. & Hanada, K. Sphingolipid metabolism at the ER-Golgi contact zone and its impact on membrane trafficking. Contact 3, 2515256420959514 (2020).

    Google Scholar 

  43. Aon, M. A. et al. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metab. 32, 100–116.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Björck, M. L. & Brzezinski, P. Control of transmembrane charge transfer in cytochrome C oxidase by the membrane potential. Nat. Commun. 9, 3187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Schnaider, L. et al. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun. 8, 1365 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beirao, S. et al. Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin. Photochem. Photobiol. 90, 1387–1396 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Vyas, N. et al. How does ultrasonic cavitation remove dental bacterial biofilm? Ultrason. Sonochem. 67, 105112 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Guo, W. et al. Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair. Carbohydr. Polym. 277, 118828 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta 1788, 1687–1692 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Poole, R. K. & Cook, G. M. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv. Microb. Physiol. 43, 165–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Schmidtchen, A., Frick, L.-M., Andersson, E., Tapper, H. & Björck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Breidenstein, E. B. M., de la Fuente-Nunez, C. & Hancock, R. E. W. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19, 419–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Schweizer, T. A. et al. Intervertebral disc cell chondroptosis elicits neutrophil response in Staphylococcus aureus spondylodiscitis. Front. Immunol. 13, 908211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Babic, M. & Simpfendorfer, C. S. Infections of the spine. Infect. Dis. Clin. North Am. 31, 279–297 (2017).

    Article  PubMed  Google Scholar 

  56. Kar, B., Venishetty, N., Kumar Yadav, S. & Sakale, H. Use of vancomycin mixed bone graft and vancomycin mixed saline wash before wound closure reduces the rate of infection in lumbar spine fusion surgery. Cureus 13, e17275 (2021).

    PubMed  PubMed Central  Google Scholar 

  57. Binch, A. L. A., Fitzgerald, J. C., Growney, E. A. & Barry, F. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat. Rev. Rheumatol. 17, 158–175 (2021).

    Article  PubMed  Google Scholar 

  58. Ziegler, A., Gonzalez, L. & Blikslager, A. Large animal models: the key to translational discovery in digestive disease research. Cell Mol. Gastroenterol. Hepatol. 2, 716–724 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Daly, C., Ghosh, P., Jenkin, G., Oehme, D. & Goldschlager, T. A review of animal models of intervertebral disc degeneration: pathophysiology, regeneration, and translation to the clinic. BioMed Res. Int. 2016, 5952165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sloan, S. R. Jr. et al. Combined nucleus pulposus augmentation and annulus fibrosus repair prevents acute intervertebral disc degeneration after discectomy. Sci. Transl. Med. 12, eaay2380 (2020).

    Article  PubMed  Google Scholar 

  61. Rybak, M. J. et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 77, 835–864 (2020).

    Article  PubMed  Google Scholar 

  62. Hussain, S. et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2, 95–103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu, D. S. et al. Effects of chondroitinase ABC and chymopapain on spinal motion segment biomechanics - An in vivo biomechanical, radiologic, and histologic canine study. Spine 22, 1828–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. ter Haar, G. Therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol. 93, 111–129 (2007).

    Article  PubMed  Google Scholar 

  66. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  PubMed  Google Scholar 

  68. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  69. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  70. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  71. Martoňák, R., Laio, A. & Parrinello, M. Predicting crystal structures: the Parrinello-Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003).

    Article  PubMed  Google Scholar 

  72. Berendsen, H. J. C. et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  73. Cheng, X. et al. Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann. Rheum. Dis. 77, 770–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Wiegand, I., Hilpert, K. & Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Bridgen, D. T. et al. Regulation of human nucleus pulposus cells by peptide-coupled substrates. Acta Biomater. 55, 100–108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lam, S. J. et al. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Ye, Y. et al. Bioactive hydrogel encapsulated dual-gene engineered nucleus pulposus stem cells towards intervertebral disc tissue repair. Chem. Eng. J. 453, 139717 (2023).

    Article  CAS  Google Scholar 

  78. Feng, X. et al. Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomyelitis. ACS Nano 16, 2546–2557 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (numbers 82372380, 22175058, 82130072, 82272459, 82072505, 51801056), Natural Science Foundation of Hubei Province (2023AFB770) and the National Key Research and Development Plan of China (number 2020YFC2006000).

Author information

Authors and Affiliations

Contributions

L.T., X.Z. and C.Y. conceived and designed the study. X.Z., X.F., L.M., J.L., G.L., W.Z. and H.L. performed the experiments. X.Z., L.T., D.W. and B.T. analysed and interpreted the data. The manuscript was written by L.T. and X.Z.

Corresponding authors

Correspondence to Cao Yang or Lei Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Jianfeng Cai, Francesca Cavalieri, Ebru Oral, Tzanko Tzanov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spread plate assay after antimicrobial activity of 15 peptides against MRSA and then performed analysis.

The antibacterial activities of 15 peptides against MRSA under US or without US for 15 min. The data are presented as means ± s.d., with n = 5 biological replicates. Statistical analysis was performed using one-way ANOVA. ns: no significant.

Source data

Extended Data Fig. 2 Spread plate assay for self-antibacterial efficiency of the peptides.

Antibacterial activities of 15 peptides (without US) incubated with MRSA at 37 °C for 18 h. Data are means ± s.d., with n = 5 biological replicates. Statistical analysis was performed using one-way ANOVA.

Source data

Extended Data Fig. 3 The toxicity of the peptides to the NP-derived cells was calculated by MTT and LDH assays.

a, The effect of 15 peptides with gradient concentrations on the viability of NP-derived cells. The IC50 is extracted in curve according to MTT assay; n = 6. b, The effect of FFRK8’s gradient concentration on the viability of NP-derived cells. The IC50 is extracted in curve according to LDH assay. n = 6. Data and error bars in (a,b) represent the mean ± s.d., with n = 6 biological replicates.

Source data

Extended Data Fig. 4 Investigation of optimal ultrasonic antimicrobial conditions for FFRK8 peptide.

Antibacterial experiments on MRSA using different concentrations of FFRK8 under US. The experimental results of spread-plate assay are respectively presented in the form of antibacterial efficiency (a) and counting of CFU/mL (b). c, After undergoing 15 min of antibacterial treatment with FFRK8+US, the supernatant was either removed by centrifugation or left intact, and then the treated MRSA were cultured in a 96-well plate. After 24 h of incubation, the absorbance at 600 nm was measured. n = 6. d, Antibacterial ability of FFRK8 with US treatment for 15 and 30 min, respectively. Panels b and d are shown as mean ± s.d. n = 5 biological replicates. Statistical significance was calculated using one- (b) or two-way (d) ANOVA.

Source data

Extended Data Fig. 5 Biocompatibility testing of peptides.

a, Representative live/dead fluorescence staining of HAMA hydrogel loaded BMSCs and paravertebral fibroblasts treated with FFRK8, US, and FFRK8+US for 15 min. Green fluorescence stained by Calcein dye indicates live BMSCs and paravertebral fibroblasts cells, and red fluorescence stained by PI dye represents dead cells. b,c, Mean fluorescence intensity (MFI) visually quantifies the green and red fluorescence intensity (arbitrary units; a.u.) of BMSCs and paravertebral fibroblasts. ns: no significant. The values are presented as mean ± s.d. of n = 3 biological replicates, and were calculated using two-way ANOVA. d,e, Testing of IC50 of FFRK8 peptide on BMSCs and paravertebral fibroblasts. Cell viability of BMSCs and paravertebral fibroblasts treated by FFRK8. Data and error bars represent the mean ± s.d., with n = 3 biological replicates.

Source data

Extended Data Fig. 6 Ultrasonic antimicrobial broad-spectrum testing of the FFRK8 peptide.

Antibacterial activities of the peptides against S. aureus, MRSA, E. coli, S. epidermidis, E. cancerogenus, and P. aeruginosa. The values are presented as mean ± s.d. of n = 5 biological replicates, and were calculated using two-way ANOVA.

Source data

Extended Data Fig. 7 Imaging and histology of intervertebral anti-infection experiments in rats.

a, Reconstructed 3D images according to micro-CT. b, Nuclear magnetic resonance imaging (MRI) of intervertebral disk (IVD) of rats and corresponding X-ray images as background. c, Histological staining of Masson. d, Immunohistochemistry staining of Col2a1 and Mmp13.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1–5.

Reporting Summary

Peer Review File

Source data

Source Data

Statistical source data for main figures and extended figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Feng, X., Ma, L. et al. A sonosensitive diphenylalanine-based broad-spectrum antimicrobial peptide. Nat. Biomed. Eng 9, 1349–1365 (2025). https://doi.org/10.1038/s41551-025-01377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01377-w

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology