Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The pigment transporter Redboy confers programmed body colour transition in orchid mantises

Abstract

Programmed phenotypic transition is prevalent throughout the tree of life, yet the concrete mechanisms that underpin this phenomenon are poorly understood. The orchid mantis (Hymenopus coronatus, Mantodea) is a model study system for programmed body colour transitions that displays a prominent black-red body colour in first-instar nymphs, then switches to a flowery white body colour in later-instar nymphs. Here we reveal that this body colour transition is achieved by the simultaneous excretion of decarboxylated-xanthommatin (red pigment) and the accumulation of uric acid (white pigment) in the epidermis during the first moult. This change in pigmentation is associated with a novel subtype of ABCG pigment transporter that we call ‘Redboy’ in Polyneoptera, which is upregulated by insect steroid hormone (ecdysone) during the first moult of orchid mantises. RNAi assay and pigment analyses show that Redboy functions together with the co-transporter White, exporting red pigments from and concurrently importing white pigments into the epidermal cells. Spectral reflectance analyses and predation experiments reveal that Redboy-conferred programmed body colour transition enhances predator avoidance during the first instar, and both prey attraction and predator avoidance in later instars. Our findings clarify how gene family evolution and hormone regulation coordinate programmed phenotypic transition and promote ecological adaptation in orchid mantises.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Programmed body colour transition in orchid mantis nymphs.
Fig. 2: Identification and tracking of pigments involved in programmed body colour transition.
Fig. 3: Gene family expansion and positive selection generate a novel subtype of ABCG pigment transporter, Redboy, in Polyneoptera.
Fig. 4: Ecdysone-induced Redboy confers body coloration and programmed body colour transition.
Fig. 5: Redboy-conferred programmed body colour transition enhances mimicry-camouflage shift.
Fig. 6: Genetics and evolution of Redboy in programmed body colour transition and its ecological significance.

Similar content being viewed by others

Data availability

Sanger sequencing verified mRNA sequences have been submitted to GenBank database (OR571863–OR571871). Genomic, transcriptomic and Hi-C sequencing data used in our study are submitted to the National Genomics Data Center (https://www.cncb.ac.cn/) with project number PRJCA019827. The genome assembly data are available from the Genome Warehouse with accession number GWHDUCZ00000000. The raw data of PacBio (CRX794670), Illumina (CRX794672), Hi-C (CRX794671) and RNA-seq (CRX794645–CRX794669) are available in the Genome Sequence Archive. Source data are provided with this paper.

References

  1. Wilbur, H. M. Complex life cycles. Annu. Rev. Ecol. Syst. 11, 67–93 (1980).

    Article  Google Scholar 

  2. Werner, E. E. & Gilliam, J. F. The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Syst. 15, 393–425 (1984).

    Article  Google Scholar 

  3. Endler, J. A. in Behavioural Ecology: An evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 169–202 (Blackwell Scientific, 1991)

  4. Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

    Article  PubMed  Google Scholar 

  5. Caro, T. & Mallarino, R. Coloration in Mammals. Trends Ecol. Evol. 35, 357–366 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford Univ. Press, 2019).

  7. Futahashi, R. & Fujiwara, H. Juvenile hormone regulates butterfly larval pattern switches. Science 319, 1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Skelhorn, J., Rowland, H. M., Speed, M. P. & Ruxton, G. D. Masquerade: camouflage without crypsis. Science 327, 51–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. et al. The evolution and diversification of oakleaf butterflies. Cell 185, 3138–3152.e20 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Jin, H., Yoda, S., Liu, L., Kojima, T. & Fujiwara, H. Notch & delta control the switch and formation of camouflage patterns in caterpillars. iScience 23, 101315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greene, E. A diet-induced developmental polymorphism in a caterpillar. Science 243, 643–646 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Booth, C. L. Evolutionary significance of ontogenetic color change in animals. Biol. J. Linn. Soc. Lond. 40, 125–163 (1990).

    Article  Google Scholar 

  13. Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).

    Article  PubMed  Google Scholar 

  14. Stevens, M. Color change, phenotypic plasticity, and camouflage. Front. Ecol. Evol. 4, 51 (2016).

    Article  Google Scholar 

  15. Duarte, R. C., Flores, A. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos. Trans. R. Soc. Lond. B 372, 20160342 (2017).

    Article  Google Scholar 

  16. Anderson, B. & de Jager, M. L. Natural selection in mimicry. Biol. Rev. 95, 291–304 (2020).

    Article  PubMed  Google Scholar 

  17. Moriyama, M. in Pigments, Pigment Cells and Pigment Patterns (eds Hashimoto, H. et al.) 451–472 (Springer, 2021).

  18. Yoda, S., Otaguro, E., Nobuta, M. & Fujiwara, H. Molecular mechanisms underlying pupal protective color switch in Papilio polytes butterflies. Front. Ecol. Evol. 8, 51 (2020).

    Article  Google Scholar 

  19. Wang, X. & Kang, L. Molecular mechanisms of phase change in locusts. Annu. Rev. Entomol. 59, 225–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Futahashi, R., Kurita, R., Mano, H. & Fukatsu, T. Redox alters yellow dragonflies into red. Proc. Natl Acad. Sci. USA 109, 12626–12631 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin, H. & Fujiwara, H. in Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach (eds Sekimura, T. & Nijhout, H. F.) 271–286 (Springer, 2017).

  22. Zhao, X., Liu, J. X. & Chen, Z. The orchid mantis exhibits high ontogenetic colouration variety and intersexual life history differences. Evol. Ecol. 37, 569–582 (2023).

    Article  Google Scholar 

  23. Wallace, A. R. Darwinism: an Exploitation of the Theory of Natural Selection with Some of its Applications (MacMillan, 1889).

  24. O’Hanlon, J. C. The roles of colour and shape in pollinator deception in the orchid mantis Hymenopus coronatus. Ethology 120, 652–661 (2014).

    Article  Google Scholar 

  25. Zhao, X. et al. Petal-shaped femoral lobes facilitate gliding in orchid mantises. Curr. Biol. 34, 183–189.e4 (2023).

    Article  PubMed  Google Scholar 

  26. O’Hanlon, J. C., Holwell, G. I. & Herberstein, M. E. Pollinator deception in the orchid mantis. Am. Nat. 183, 126–132 (2014).

    Article  PubMed  Google Scholar 

  27. O’hanlon, J. C., Holwell, G. I. & Herberstein, M. E. Predatory pollinator deception: does the orchid mantis resemble a model species? Curr. Zool. 60, 90–103 (2014).

    Article  Google Scholar 

  28. O’Hanlon, J. C. Orchid mantis. Curr. Biol. 26, R145–R146 (2016).

    Article  PubMed  Google Scholar 

  29. Hawkeswood, T. J. & Sommung, B. Observations on the pink orchid mantis, Hymenopus coronatus Olivier, 1792 (Insecta: Mantodea: Hymenopodidae) from the Queen Sirikit Botanical Garden, Chiang Mai, northern Thailand, with a review of literature on its biology and “mimicry” system. Calodema 570, 1–7 (2019).

    Google Scholar 

  30. Yang, M. et al. A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. eLife 8, e41362 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Futahashi, R. & Osanai-Futahashi, M. Pigments in Insects (Springer Nature, 2021).

  32. Arakane, Y., Noh, M. Y., Asano, T. & Kramer, K. J. Tyrosine Metabolism for Insect Cuticle Pigmentation and Sclerotization (Springer, 2016).

  33. Vargas-Lowman, A. et al. Cooption of the pteridine synthesis pathway underlies the diversification of embryonic colors in water striders. Proc. Natl Acad. Sci. USA 116, 19046–19054 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, L. et al. Mutation of a novel ABC transporter gene is responsible for the failure to incorporate uric acid in the epidermis of ok mutants of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 43, 562–571 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, H., Kiuchi, T., Hirayama, C., Katsuma, S. & Shimada, T. Bombyx ortholog of the Drosophila eye color gene brown controls riboflavin transport in Malpighian tubules. Insect Biochem. Mol. Biol. 92, 65–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Figon, F. & Casas, J. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev. 94, 156–18 (2019).

    Article  PubMed  Google Scholar 

  37. Figon, F. et al. Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. Insect Biochem. Mol. Biol. 124, 103403 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Ellerbe, P., Cohen, A., Welch, M. J. & White, E. The stability of uric acid in ammonium hydroxide. Clin. Chem. 34, 2280–2282 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Nel, A. et al. The earliest known holometabolous insects. Nature 503, 257–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Hughes, A., Liggins, E. & Stevens, M. Imperfect camouflage: how to hide in a variable world? Proc. Biol. Sci. 286, 20190646 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 40, 363–375 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Yamanaka, N. Ecdysteroid signalling in insects—from biosynthesis to gene expression regulation. Adv. Insect Physiol. 60, 1–36 (2021).

    Article  Google Scholar 

  44. Huang, G., Song, L., Du, X., Huang, X. & Wei, F. Evolutionary genomics of camouflage innovation in the orchid mantis. Nat. Commun. 14, 4821 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pinamonti, S., Chiarelli-Alvisi, G. & Colombo, G. The xanthommatin forming enzyme system of the desert locust, Schistocerca gregaria. Insect Biochem. 3, 289–296 (1973).

    Article  CAS  Google Scholar 

  46. Caputi, L., Malnoy, M., Goremykin, V., Nikiforova, S. & Martens, S. A. Genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J. 69, 1030–1042 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Helmkampf, M., Cash, E. & Gadau, J. Evolution of the insect desaturase gene family with an emphasis on social Hymenoptera. Mol. Biol. Evol. 32, 456–471 (2015).

    Article  PubMed  Google Scholar 

  48. Nakazawa, T., Ohba, S. Y. & Ushio, M. Predator-prey body size relationships when predators can consume prey larger than themselves. Biol. Lett. 9, 20121193 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Higginson, A. D. & Ruxton, G. D. Optimal defensive coloration strategies during the growth period of prey. Evolution 64, 53–67 (2010).

    Article  PubMed  Google Scholar 

  50. Barnett, J. B. et al. Size-dependent colouration balances conspicuous aposematism and camouflage. J. Evol. Biol. 36, 1010–1019 (2023).

    Article  PubMed  Google Scholar 

  51. Morgan, T. H. Sex limited inheritance in Drosophila. Science 32, 120–122 (1910).

    Article  CAS  PubMed  Google Scholar 

  52. Hazelrigg, T., Levis, R. & Rubin, G. M. Transformation of white locus DNA in Drosophila: dosage compensation, zeste interaction, and position effects. Cell 36, 469–481 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021).

    Article  PubMed  Google Scholar 

  64. Bao, W., Kojima, K. K. & Kohany, O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene structure prediction in higher organisms. Inform. Softw. Tech. 47, 965–978 (2005).

    Article  Google Scholar 

  67. Bruna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 3, lqaa108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bruna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2, lqaa026 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mei, Y. et al. InsectBase 2.0: a comprehensive gene resource for insects. Nucleic Acids Res. 50, D1040–D1045 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Article  PubMed  Google Scholar 

  76. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graphbased genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).

    Article  PubMed  Google Scholar 

  80. Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li, S. et al. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9, 1008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pei, X. J. et al. Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biol. 19, e3001330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maia, R., Gruson, H., Endler, J. A. & White, T. E. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evol. 10, 1097–1107 (2019).

    Article  Google Scholar 

  85. Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. Biol. Sci. 265, 351–358 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B. & Menzel, R. Colour thresholds and receptor noise: behaviour and physiology compared. Vision Res. 41, 639–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Briscoe, A. D. Reconstructing the ancestral butterfly eye: focus on the opsins. J. Exp. Biol. 211, 1805–1813 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705–724 (2015).

    Article  PubMed  Google Scholar 

  89. Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).

    Article  PubMed  Google Scholar 

  90. Zeng, H., Zhao, D., Zhang, Z. X., Gao, H. Z. & Zhang, W. Imperfect ant mimicry contributes to local adaptation in a jumping spider. iScience 26, 106747 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We greatly appreciate K. Kjer for polishing and improving this manuscript. We thank S. Z. Zhang from Northwest A & F University for his help in pigments analysis. This work was supported by the National Natural Science Foundation of China (grant number 32220103003, 31930014 to S.L., 32325009, 32170420 to W.Z., 32200384 to X.-J.P. and 32170425 to Y.-X.L), the Laboratory of Lingnan Modern Agriculture Project (grant number NT2021003 to S.L. and X.-X.C.), the Department of Science and Technology in Guangdong Province (grant number 2019B090905003 to S.L.), the Shenzhen Science and Technology Program (grant number KQTD20180411143628272 to S.L.), the China Postdoctoral Science Foundation (grant number 2022M710053 to X.-J.P.), the Guangdong Basic and Applied Basic Research Foundation (grant number 2025A1515012479 to X.-J.P.), and by grants from Benyuan Charity Young Investigator Exploration Fellowship in Life Science, The Feng Foundation of Biomedical Research, the Peking-Tsinghua Center for Life Sciences and the State Key Laboratory of Gene Function and Modulation to W.Z.

Author information

Authors and Affiliations

Authors

Contributions

S.L., X.-J.P., W.Z. and X.-X.C. conceptualized the study. S.L., W.Z., X.-X.C. X.-J.P. and Y.-X.L. acquired the funding. X.-J.P., D.Z., J.L., P.-Y.J., Y.L., W.-X.H., Z.-F.Z., D.-Y.H., J.-X.N., H.-Z.G., Z.C. and Y.-X.L. carried out the investigation and curated the data. X.-J.P., D.Z. and J.L. visualized the data. X.-J.P. and D.Z. wrote the original paper. All authors reviewed and edited the paper. S.L., W.Z. and X.-X.C. supervised the study.

Corresponding authors

Correspondence to Xue-Xin Chen, Wei Zhang or Sheng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Reviewer recognition

Nature Ecology & Evolution thanks Ryo Futahashi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Identification of melanin and ommochrome in first-instar nymphs.

a, Exuviae generated during the first moult. AC: abdominal cuticle, TC: thoracic cuticle. b,c,d,e,f, Relative expression of melanin synthesis genes (TH: tyrosine hydroxylase, DDC: dopa decarboxylase, ebony: N-β-alanyldopamine synthase, Tan: N-β-alanyldopamine hydrolase, and aaNAT: arylalkylamine-N-acetyltransferase) in various body parts in late embryos. Different letters indicate statistically significant differences between groups (Welch’s ANOVA, Games–Howell multiple comparisons test, P < 0.05, n = 4 biological replicates). g, Kr-h1 is highly expressed around hatching. n = 3 or 4 biological replicates. h,i, Phenotypic effects of DDC- and aaNAT-RNAi in fourth-instar nymphs. DDC knock-down lightens color of tibial end in higher-instar nymphs, while aaNAT inhibition darkens color of several cuticle parts. j,j’,j”, Relative expression of ommochrome synthesis genes including Ver, KFase, and KMO expression in different regions at ED35, Welch’s ANOVA, Games–Howell multiple comparisons test, different letters indicate significant differences between groups, P < 0.05, n = 4 biological replicates. k,k’,k”, Tertiary mass spectrometry of the red pigment (DX). k, Primary mass spectrometry identifies a high-abundance molecule with a molecular ion of m/z = 380, identified as molecular ion of DX, k’, Secondary mass spectrometry detects two ion fragments with m/z of 363 and 307, k”, further fracture analysis of ions with m/z of 363 generates two fragments with m/z of 345 and 317. The break of ion fragments is shown by dotted lines, removed groups is represented by red fonts. Data in b–g and j–j” are mean ± s.e.m. Individuals are represented by dots in b–f and j–j”. All statistical tests are two-tailed. Source data are provided in Source Data Extended Data Fig. 1.

Source data.

Extended Data Fig. 2 Genome analyses and gene family studies in the orchid mantis.

a, Chromosomes of Hymenopus coronatus in the testis cell from sixth-instar nymphs. Twenty-one chromosomes (2n = 42) present at spermatogonial metaphase. b, Genome-wide contact matrix from Hi-C data between all chromosomes. c, Venn plot of gene functional annotation in five databases of the orchid mantis. d, Genomic landscapes of H. coronatus. Denotation of each track listed on the left bottom of the circos plot. e, Genome size analyses of various insects from different orders. Each dot represents one species. f, Phylogeny and subfamily identification of ABC transporters from H. coronatus, D. melanogaster, and B. mori. g, Phylogenetic tree using representative ABCGpt sequences. Divergence times of each subtype and proteins calculated and shown as thick orange lines. h, Chromosomal localization of ABCG transporter genes in the orchid mantis. i, Detailed gene structure of White, Scarlet, Brown, and Redboy in the orchid mantis showing exon arrangement. j, Volcano plot represents the Log2 fold change (N2D0/N1D3) for each gene expression and the corresponding Log10 (p-value). Up-regulated ABCG pigment transporter genes labeled with red dots and black font, P values were calculated from 3 biological replicates using two-tailed Student t-test. Source data are provided in Source Data Extended Data Fig. 2.

Source data.

Extended Data Fig. 3 Screen of ABCG genes involved in body color transition in the orchid mantis.

a,b, Relative expression level of ABCG transporter genes in the integument (a) or Malpighian tubules of N2D0 mantises (b). Data are shown as mean ± s.e.m. Different letters indicate statistically significant differences between groups using Welch ANOVA (Games–Howell multiple comparisons test, P < 0.05, n = 4 biological replicates), all statistical tests are two-tailed. c, Influence of repressing highly expressed ABCG genes (ABCGpt gene are not included) on body color of the orchid mantis. d,e Relative expression of ecdysone synthesis (d) and response (e) genes. Data are shown as mean ± s.e.m, three biological replicates. Source data are provided in Source Data Extended Data Fig. 3.

Source data.

Extended Data Fig. 4 Functional studies of different ABCGpt genes in programmed body colour transition.

a, Effect of repression different ABCG pigment transporter (ABCGpt) genes on the fading of red pigments during the first moult. b, Relative expression of different ABCGpt genes in the abdominal cuticle (AC), fat body (FB), head, Malpighian tubule (MT), gut, leg, and thorax of N2D0 mantises. Data are shown as mean ± SEM, different letters indicate statistically significant differences between groups using Welch’s ANOVA (Games–Howell multiple comparisons test, P < 0.05, n = 4 biological replicates, individuals are represented by dots), all statistical tests are two-tailed. c, Fluorescence in situ hybridization of Redboy in the integument of early fourth-instar nymphs. The four diagrams in the upper left corner represent DAPI (blue), FITC (green), bright field and superposition diagram respectively. The four diagrams showcases in the lower left corner correspond to enlarged pictures. The green fluorescence signal in the dsMuslta sample disappeared in the right Redboy-RNAi samples, suggesting that the green signal represents Redboy mRNA. Notably, the signal in the epidermis is a non-specific signal of chitin in the cuticle. d, DX injected into the haemolymph is normally excreted into the MT after the knock-down of Brown. e, Inhibition of Brown or White causes the yellow pigment in the MT to disappear. f, Influence of inhibition different ABCGpt genes using the second RNAi targets on the body color of fourth-instar nymphs. Source data are provided in Source Data Extended Data Fig. 4.

Source data.

Extended Data Fig. 5 Supplementary results regarding the spectral reflectance and color contrast.

a, Color contrast (just noticeable difference, JND) between forth-instar orchid mantises and various flowers as perceived by the butterfly Pieris rapae, or the bird Cyanistes caeruleus and Pavo cristatus. The gray box plot represents the contrast between the WT orchid mantis (n = 10) and the flowers (J. sambac: n = 10, C. sinensis: n = 5, G. jasminoides: n = 10), while the purple box plot represents the contrast between the Redboy-RNAi orchid mantis (n = 9) and flowers. Color contrast values ≤ 3 indicate low discriminability of the colours for a given visual system (dashed line = 3). solid box plot: achromatic contrast, hollow box plot: chromatic contrast, and also for subsequent representation. b, Examination of color contrast between second-instar WT (black box plot, n = 10) or Redboy-RNAi (red box plot, n = 10) orchid mantises and various flowers from perspectives of the butterfly P. rapae and bird C. caeruleus. These data were also illustrated by spectral reflectance (mean ± S.E.). c, Color contrast between the flower model (n = 10) and real flowers from the perspective of the butterfly P. rapae or the peacock P. cristatus. Box plots depict the median, upper and lower quartiles, and maxima and minima; dots indicate outliers. *P < 0.05; **P < 0.01; ***P < 0.001, each test have been repeated for more than 3 times. Source data are provided in Source Data Extended Data Fig. 5. We chose one of Kruskal‒Wallis test, One-way ANOVA and Welch’s ANOVA according to the data normality and variance heterogeneity in statistics, and the results are provided in Supplementary Table 3.

Source data.

Extended Data Fig. 6 Initial choice behavior and position effects in Fig. 5d-f experiments.

a, The untrained spider P. labiata (n = 25) showed no initial orient preference between blackened/unblackened mantises, while trained spiders (n = 23) preferred blackened mantises. The relative positions of the praying mantis had no effect on the results. a’, The attention duration is not affected by the positions of the mantis. b, The first approach of untrained (n = 30) or black flower model trained Pieris rapae (n = 18) showed no preference between Redboy-RNAi and wild-type (WT) orchid mantises, while white flower model trained butterflies exhibit significant preference to WT orchid mantises (n = 16). This preference was irrelevant with the positions of the mantis. b’ The total number of approaches of trained or untrained butterflies show no relevant with the positions of the mantis. c, The number of chicks trying the flower model gradually decreased with the training, suggesting the effectiveness of the training. c’, Untrained chicks (n = 8) showed no initial attack preference, while white/black-flower-trained chicks (each n = 12) preferred Redboy-RNAi orchid mantises. This preference was irrelevant with the positions of the orchid mantis. c”, The total number of attacks of trained or untrained butterflies show no relevant with the positions of the orchid mantis. Box plots depict the median, upper and lower quartiles, and maximum and minimum values, with outliers represented by dots. *P < 0.05; **P < 0.01; ***P < 0.001. Source data are provided in Source Data Extended Data Fig. 5. a’, LMM statistical results are provided in Supplementary Table 4. b’ and c”, LMM statistical results are provided in Supplementary Table 5. a, b, and c’, GLMM statistical results are provided in Supplementary Table 6. c, Kruskal‒Wallis test or One-way ANOVA statistical results are provided in Supplementary Table 7.

Extended Data Fig. 7 Field observations of first- or fifth-instar orchid mantises.

a, The first-instar orchid mantis exhibits body colours reminiscent of various local bugs. b, The fifth-instar orchid mantis resembles local white flower blossoms. c, Mantises in the same habitat typically display a cryptic green or gray body color.

Supplementary information

Supplementary Information

Supplementary Tables 1–8.

Reporting Summary

Peer Review File

Supplementary Video 1

The first-instar orchid mantis hides behind leaves and jumps to escape from the predator (an ant).

Supplementary Video 2

The body colour of higher-instar orchid mantis nymphs can confuse bees.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, XJ., Zhao, D., Luo, J. et al. The pigment transporter Redboy confers programmed body colour transition in orchid mantises. Nat Ecol Evol 9, 1120–1137 (2025). https://doi.org/10.1038/s41559-025-02737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02737-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing