Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An adaptive moiré sensor for spectro-polarimetric hyperimaging

Abstract

Moiré photonic structures permit the engineering of optical band structures and light–matter interactions, offering new opportunities in photonics and optoelectronics, paving the way for new nanophotonic applications such as ultra-low threshold lasing, and versatile nonlinear and quantum light sources; however, the lack of in situ tunability has limited the potential of these structures until now. For example, the lack of control of the twist angle is an obstacle to high-resolution material spectroscopy and the development of new applications that require moiré optical properties. Here we present a microelectromechanical system (MEMS)-integrated twisted moiré photonic crystal sensor with a tunable interlayer distance and twist angle. The MEMS actuators modulate the wavelength and polarization resonances of the photonic crystal sensor via a twist- and gap-tuned moiré scattering effect. Using a reconstruction algorithm, this chip-based sensor can be used to simultaneously resolve the spectrum and polarization state of a wide-band signal in the telecommunications range and the full Poincaré sphere. We also demonstrate hyperspectral and hyperpolarimetric imaging using this single sensor. Our research illustrates some of the remarkable applications of multidimensional control of degrees of freedom in twisted moiré photonic platforms and establishes a scalable pathway towards creating comprehensive flat-optics devices suitable for versatile light manipulation and information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational reconstruction of multidimensional information.
Fig. 2: Microelectromechanically tunable twisted moiré photonic crystal sensor.
Fig. 3: Tunable optical responses.
Fig. 4: Sensing principle and results.
Fig. 5: Hyperspectral and hyperpolarimetric imaging.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available from the corresponding authors on reasonable request.

Code availability

The code used in this paper is available from the corresponding authors on reasonable request.

References

  1. Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    Article  Google Scholar 

  2. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  ADS  Google Scholar 

  3. Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article  ADS  Google Scholar 

  4. Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).

    Article  ADS  Google Scholar 

  5. Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1020 (2019).

    Article  ADS  Google Scholar 

  6. Lee, S., Peng, R., Wu, C. & Li, M. Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat. Commun. 13, 1485 (2022).

    Article  ADS  Google Scholar 

  7. Meng, J., Cadusch, J. J. & Crozier, K. B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Lett. 20, 320–328 (2020).

    Article  ADS  Google Scholar 

  8. Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).

    Article  ADS  Google Scholar 

  9. Yuan, S., Naveh, D., Watanabe, K., Taniguchi, T. & Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 15, 601–607 (2021).

    Article  ADS  Google Scholar 

  10. Kong, L. et al. Single-detector spectrometer using a superconducting nanowire. Nano Lett. 21, 9625–9632 (2021).

    Article  ADS  Google Scholar 

  11. Deng, W. et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat. Commun. 13, 4627 (2022).

    Article  ADS  Google Scholar 

  12. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article  ADS  Google Scholar 

  13. Wang, J. et al. Continuous-spectrum-polarization recombinant optical encryption with a dielectric metasurface. Adv. Mater. 35, e2304161 (2023).

    Article  Google Scholar 

  14. Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461–468 (2022).

    Article  Google Scholar 

  15. Gao, L., Qu, Y., Wang, L. & Yu, Z. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics 11, 2507–2529 (2022).

    Article  Google Scholar 

  16. Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  ADS  Google Scholar 

  17. Wang, Z. & Yu, Z. Spectral analysis based on compressive sensing in nanophotonic structures. Opt. Express 22, 25608–25614 (2014).

    Article  ADS  Google Scholar 

  18. Ahmed, T. et al. Neuromorphic imaging: fully light‐controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 33, 2170074 (2021).

    Article  Google Scholar 

  19. Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photon. 12, 84–90 (2018).

    Article  ADS  Google Scholar 

  20. Yu, S., Qiu, C.-W., Chong, Y., Torquato, S. & Park, N. Engineered disorder in photonics. Nat. Rev. Mater. 6, 226–243 (2020).

    Article  ADS  Google Scholar 

  21. Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980–985 (2022).

    Article  Google Scholar 

  22. Tang, H. et al. Experimental probe of twist angle-dependent band structure of on-chip optical bilayer photonic crystal. Sci. Adv. 9, eadh8498 (2023).

    Article  Google Scholar 

  23. Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).

    Article  ADS  Google Scholar 

  24. Lou, B., Wang, B., Rodríguez, J. A., Cappelli, M. & Fan, S. Tunable guided resonance in twisted bilayer photonic crystal. Sci. Adv. 8, eadd4339 (2022).

    Article  Google Scholar 

  25. Liu, S. et al. Moiré metasurfaces for dynamic beamforming. Sci. Adv. 8, eabo1511 (2022).

    Article  ADS  Google Scholar 

  26. Tang, H. et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci. Appl. 10, 157 (2021).

    Article  ADS  Google Scholar 

  27. Tang, H., Ni, X., Du, F., Srikrishna, V. & Mazur, E. On-chip light trapping in bilayer moiré photonic crystal slabs. Appl. Phys. Lett. 121, 231702 (2022).

    Article  ADS  Google Scholar 

  28. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article  ADS  Google Scholar 

  29. Huang, L., Zhang, W. & Zhang, X. Moiré quasibound states in the continuum. Phys. Rev. Lett. 128, 253901 (2022).

    Article  ADS  Google Scholar 

  30. Nguyen, D. X. et al. Magic configurations in moiré superlattice of bilayer photonic crystals: almost-perfect flatbands and unconventional localization. Phys. Rev. Res. 4, L032031 (2022).

    Article  Google Scholar 

  31. Yi, C.-H., Park, H. C. & Park, M. J. Strong interlayer coupling and stable topological flat bands in twisted bilayer photonic moir‚ superlattices. Light Sci. Appl. 11, 289 (2022).

    Article  ADS  Google Scholar 

  32. Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

    Article  ADS  Google Scholar 

  33. Chen, J. et al. A perspective of twisted photonic structures. Appl. Phys. Lett. 119, 240501 (2021).

    Article  ADS  Google Scholar 

  34. Raun, A., Tang, H., Ni, X., Mazur, E. & Hu, E. L. GaN magic angle laser in a merged moiré photonic crystal. ACS Photon. 10, 3001–3007 (2023).

    Article  Google Scholar 

  35. Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article  ADS  Google Scholar 

  36. Oudich, M. et al. Photonic analog of bilayer graphene. Phys. Rev. B 103, 214311 (2021).

    Article  ADS  Google Scholar 

  37. Zhang, T. et al. Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum. Nat. Commun. 14, 6014 (2023).

    Article  ADS  Google Scholar 

  38. Ni, X. et al. Three-dimensional reconfigurable optical singularities in bilayer photonic crystals. Phys. Rev. Lett. 132, 073804 (2024).

    Article  ADS  Google Scholar 

  39. Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article  Google Scholar 

  40. Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    Article  ADS  Google Scholar 

  41. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  ADS  Google Scholar 

  42. Hu, G., Zheng, C., Ni, J., Qiu, C.-W. & Alù, A. Enhanced light–matter interactions at photonic magic-angle topological transitions. Appl. Phys. Lett. 118, 211101 (2021).

    Article  ADS  Google Scholar 

  43. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  44. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  ADS  Google Scholar 

  45. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  ADS  Google Scholar 

  46. Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).

    Article  Google Scholar 

  47. Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photon. 14, 663–668 (2020).

    Article  ADS  Google Scholar 

  48. Arkhipova, A. A. et al. Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys. Rev. Lett. 130, 083801 (2023).

    Article  ADS  Google Scholar 

  49. Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).

    Article  ADS  Google Scholar 

  50. Ha, S. et al. Enhanced third-harmonic generation by manipulating the twist angle of bilayer graphene. Light Sci. Appl. 10, 19 (2021).

    Article  ADS  Google Scholar 

  51. Du, L., Dai, Y. & Sun, Z. Twisting for tunable nonlinear optics. Matter 3, 987–988 (2020).

    Article  Google Scholar 

  52. Tang, H. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature 632, 1038–1044 (2024).

  53. Zhou, H. et al. Control of chirality and directionality of nonlinear metasurface light source via moiré engineering. Phys. Rev. Lett. 134, 043801 (2024).

  54. Förtsch, M. et al. A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013).

    Article  ADS  Google Scholar 

  55. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021).

    Article  ADS  Google Scholar 

  56. Salary, M. M. & Mosallaei, H. Time-modulated conducting oxide metasurfaces for adaptive multiple access optical communication. IEEE Trans. Antennas Propag. 68, 1628–1642 (2020).

    Article  ADS  Google Scholar 

  57. Kapfer, M. et al. Programming twist angle and strain profiles in 2D materials. Science 381, 677–681 (2023).

    Article  ADS  Google Scholar 

  58. Wang, D. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016).

    Article  ADS  Google Scholar 

  59. Liao, M. et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat. Mater. 21, 47–53 (2022).

    Article  ADS  Google Scholar 

  60. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  ADS  Google Scholar 

  61. Qin, H. et al. Arbitrarily polarized bound states in the continuum with twisted photonic crystal slabs. Light Sci. Appl. 12, 66 (2023).

    Article  ADS  Google Scholar 

  62. Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states in the continuum. Phys. Rev. Lett. 126, 073001 (2021).

    Article  ADS  Google Scholar 

  63. Compressed Sensing (Cambridge Univ. Press, 2012).

  64. Kilic, V., Tran, T. D. & Foster, M. A. Compressed sensing in photonics: tutorial. J. Opt. Soc. Am. B 40, 28–52 (2023).

    Article  Google Scholar 

  65. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    Article  ADS  Google Scholar 

  66. Faraji-Dana, M. et al. Hyperspectral imager with folded metasurface optics. ACS Photon. 6, 2161–2167 (2019).

    Article  Google Scholar 

  67. Zuo, J. et al. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. Light Sci. Appl. 12, 218 (2023).

    Article  ADS  Google Scholar 

  68. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  ADS  Google Scholar 

  69. Guyon, O. Extreme adaptive optics. Annu. Rev. Astron. Astrophys. 56, 315–355 (2018).

    Article  ADS  Google Scholar 

  70. Rigaut, F. & Neichel, B. Multiconjugate adaptive optics for astronomy. Annu. Rev. Astron. Astrophys. 56, 277–314 (2018).

    Article  ADS  Google Scholar 

  71. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Güney, S. Kocaman, G. Zhong and Y. Liu for discussions. We thank F. Capasso and M. Loncar for the access to the optical instruments, electrical instruments and other facilities. E.M., H.T. and F.D. acknowledge support from NSF (ECCS-2234513) and DARPA (URFAO: GR510802). S.F. and L.B. acknowledge the support from the US Air Force Office of Scientific Research (grant no. FA9550-21-1-0244), and from the US Office of Naval Research (grant no. N00014-20-1-2450). A.Y. acknowledges support from the Army Research Office under grant no. W911NF-21-2-0147 and the Gordon and Betty Moore Foundation through grant GBMF 9468. E.H. acknowledges support from NSF (ECCS-2234513). The sample fabrication was performed at Harvard University Center for Nanoscale Systems, which is a member of the National Nanotechnology Coordinated Infrastructure Network and is supported by the National Science Foundation under NSF award 1541959.

Author information

Authors and Affiliations

Authors

Contributions

Several people contributed to the work described in this paper. H.T. and B.L. conceived the basic idea for this work. H.T and B.L. prepared the paper and Supplementary Information. H.T. and Y.C. designed the MEMS and optics device, performed the nanofabrication, designed the electrical measurement set-up and performed the experiments. G.G, F.D. and H.T. performed optical measurements. B.L. and G.G. designed the reconstruction algorithm and performed measurement data analysis for sensing and imaging. M.Z., X.N., H.T. and B.L. performed numerical simulations and analytical calculations. E.M., S.F., Y.C. and H.T. supervised the research and development of the paper. All authors subsequently took part in the revision process, approved the final copy and provided feedback on the paper throughout its development.

Corresponding authors

Correspondence to Haoning Tang, Yuan Cao, Shanhui Fan or Eric Mazur.

Ethics declarations

Competing interests

The authors declare no other competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustration fabrication process.

(a) Vias drilling and coating. (b) Photonic crystal (PhC) fabrication. (c) MEMS process. (d) Vapour releasing. (e) Top layer fabrication and bonding. Blue: Silicon. Grey: Silicon oxide. Purple: Silicon Nitride. Orange: Conductive layer. Yellow: SU-8.

Extended Data Fig. 2

The sideview of the packaged MEMS-TMPhC device wire bonded to printed circuit board.

Extended Data Fig. 3 Illustration of vertical actuator driving principle.

The vertical actuator consists of a parallel capacitor that provides a driving force downwards, and a lever that magnifies the vertical translation 4 times in the reversed direction.

Extended Data Fig. 4 Illustration of rotary three-phase stepper driving principle.

(a) Illustration of the rotary actuator with three-phase electrode. (b) Driving microstepping voltage waveform for driving the rotary actuator.

Extended Data Fig. 5 Band structure measurement of moiré PhC.

(a) Schematic of the measurement set-up. The red line represents the incident light, its direct transmission, and radiation-induced scattering from the bilayer lattice. POL - Polarizer; QWP - Quarter-Wave Plate; L - Lens; OBJ - Objective Lens. (b) Band structure measured by stacking iso-frequency contours for each wavelength. The dashed line area on the top surface shows the iso-frequency contour, and the cross-section reveals the band structure. (c) Band structure measured by SuperK laser.

Extended Data Fig. 6 Simulated far-field polarization distribution in the momentum space for different moiré photonic crystal configurations.

Far-field polarization distribution in the momentum space when \(\theta =\) 12° and \(h=400\) nm (top row), \(\theta =\) 12° and \(h=500\) nm (middle row), and \(\theta =\) 10° and \(h=500\) nm (bottom row). The polarization fields of emitting upward and downward are different. The blue ellipse represents left-hand polarization (LCP) states, and the orange ellipse represents right-hand polarization (RCP) states. The winding centres of the LCP and RCP are the polarization singularity C-point. The rotational center of the two PhC slabs are perfectly aligned.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1 and 2 for illustration purposes.

Supplementary Video 1

Real-time measurement for the dynamic tuning of the moiré pattern.

Supplementary Video 2

Band structures for different Vz (interlayer gaps).

Supplementary Video 3

Iso-frequency contour for different Vz (interlayer gaps).

Supplementary Video 4

Band structures for different twist angle.

Supplementary Video 5

Iso-frequency contour for different twist angles.

Supplementary Video 6

Iso-frequency contour when rotating quater-wave plate.

Supplementary Video 7

Iso-frequency contour when rotating polarizer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Lou, B., Du, F. et al. An adaptive moiré sensor for spectro-polarimetric hyperimaging. Nat. Photon. 19, 463–470 (2025). https://doi.org/10.1038/s41566-025-01650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01650-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing