Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Realization of a doped quantum antiferromagnet in a Rydberg tweezer array

Abstract

Doping an antiferromagnetic (AFM) Mott insulator is central to our understanding of a variety of phenomena in strongly correlated electrons, including high-temperature superconductors1,2. To describe the competition between tunnelling t of hole dopants and AFM spin interactions J, theoretical and numerical studies often focus on the paradigmatic tJ model3 and the direct analogue quantum simulation of this model in the relevant regime of high-particle density has long been sought4,5. Here we realize a doped quantum antiferromagnet with next-nearest-neighbour (NNN) tunnellings t′ (refs. 6,7,8,9,10) and hard-core bosonic holes11 using a Rydberg tweezer platform. We use coherent dynamics between three Rydberg levels, encoding spins and holes12, to implement a tunable bosonic tJV model allowing us to study previously inaccessible parameter regimes. We observe dynamical phase separation between hole and spin domains for |t/J|  1 and demonstrate the formation of repulsively bound hole pairs in a variety of spin backgrounds. The interference between NNN tunnellings t′ and perturbative pair tunnelling gives rise to light and heavy pairs depending on the sign of t. Using the single-site control allows us to study the dynamics of a single hole in 2D square lattice (anti)ferromagnets. The model we implement extends the toolbox of Rydberg tweezer experiments beyond spin-1/2 models13 to a larger class of tJ and spin-1 models14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Implementation of the tJV model in a Rydberg tweezer array.
Fig. 2: Dynamical phase separation in the bosonic tJV model.
Fig. 3: Influence of the NNN tunnelling on the dynamics of hole pairs.
Fig. 4: Hole dynamics in different magnetic spin backgrounds.
Fig. 5: Hole dynamics in 2D quantum magnets.

Similar content being viewed by others

Data availability

All data are available from the corresponding author on request.

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  2. Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  3. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1994).

  4. Carroll, A. N. et al. Observation of generalized t-J spin dynamics with tunable dipolar interactions. Science 388, 381–386 (2025).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  5. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  PubMed  Google Scholar 

  6. Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).

    CAS  Google Scholar 

  7. Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t′. Science 365, 1424–1428 (2019).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  8. Jiang, Y.-F., Devereaux, T. P. & Jiang, H.-C. Ground-state phase diagram and superconductivity of the doped Hubbard model on six-leg square cylinders. Phys. Rev. B 109, 085121 (2024).

    Article  CAS  Google Scholar 

  9. Xu, H. et al. Coexistence of superconductivity with partially filled stripes in the Hubbard model. Science 384, eadh7691 (2024).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  10. Bespalova, T. A., Delić, K., Pupillo, G., Tacchino, F. & Tavernelli, I. Simulating the Fermi-Hubbard model with long-range hopping on a quantum computer. Phys. Rev. A 111, 052619 (2025).

    Article  MathSciNet  CAS  Google Scholar 

  11. Bohrdt, A. et al. Microscopy of bosonic charge carriers in staggered magnetic fields. Preprint at https://arxiv.org/abs/2410.19500 (2024).

  12. Homeier, L. et al. Antiferromagnetic bosonic tJ models and their quantum simulation in tweezer arrays. Phys. Rev. Lett. 132, 230401 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  CAS  Google Scholar 

  14. Mögerle, J. et al. Spin-1 haldane phase in a chain of Rydberg atoms. PRX Quantum 6, 020332 (2025).

    Article  Google Scholar 

  15. Liu, V. S. et al. Supersolidity and simplex phases in spin-1 Rydberg atom arrays. Preprint at https://arxiv.org/abs/2407.17554 (2024).

  16. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article  CAS  Google Scholar 

  17. Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys. 10, 409–429 (2019).

    Article  CAS  Google Scholar 

  18. Bednorz, J. G. & Müller, K. A. Possible highTc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condensed Matter 64, 189–193 (1986).

    Article  CAS  Google Scholar 

  19. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  CAS  Google Scholar 

  21. Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Shao, H.-J. et al. Antiferromagnetic phase transition in a 3D fermionic Hubbard model. Nature 632, 267–272 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Hirthe, S. et al. Magnetically mediated hole pairing in fermionic ladders of ultracold atoms. Nature 613, 463–467 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lebrat, M. et al. Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator. Nature 629, 317–322 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Prichard, M. L. et al. Directly imaging spin polarons in a kinetically frustrated Hubbard system. Nature 629, 323–328 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    Article  PubMed  Google Scholar 

  27. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Emery, V. J., Kivelson, S. A. & Lin, H. Q. Phase separation in the t-J model. Phys. Rev. Lett. 64, 475 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Boninsegni, M. Phase separation in mixtures of hard core bosons. Phys. Rev. Lett. 87, 087201 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, H. et al. Realization of a bosonic antiferromagnet. Nat. Phys. 17, 990–994 (2021).

    Article  CAS  Google Scholar 

  31. Jepsen, P. N. et al. Transverse spin dynamics in the anisotropic Heisenberg model realized with ultracold atoms. Phys. Rev. X 11, 041054 (2021).

    CAS  Google Scholar 

  32. Harris, T. J., Schollwöck, U., Bohrdt, A. & Grusdt, F. Kinetic magnetism and stripe order in the doped AFM bosonic tJ model. Preprint at https://arxiv.org/abs/2410.00904v1 (2024).

  33. Zhang, H.-K., Zhang, J.-X., Xu, J.-S. & Weng, Z.-Y. Quantum-interference-induced pairing in antiferromagnetic bosonic t-J model. Preprint at https://arxiv.org/abs/2409.15424 (2024).

  34. Siller, T., Troyer, M., Rice, T. M. & White, S. R. Bosonic model of hole pairs. Phys. Rev. B 63, 195106 (2001).

    Article  Google Scholar 

  35. O’Mahony, S. M. et al. On the electron pairing mechanism of copper-oxide high temperature superconductivity. Proc. Natl. Acad. Sci. 119, e2207449119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morera, I., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from kinetic frustration in ladder systems. Phys. Rev. Res. 6, 023196 (2024).

    Article  CAS  Google Scholar 

  37. Sous, J. & Pretko, M. Fractons from polarons. Phys. Rev. B 102, 214437 (2020).

    Article  CAS  Google Scholar 

  38. Barredo, D. et al. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).

    Article  PubMed  Google Scholar 

  39. Emperauger, G. et al. Benchmarking direct and indirect dipolar spin-exchange interactions between two Rydberg atoms. Phys. Rev. A 111, 062806 (2025).

    Article  CAS  Google Scholar 

  40. Wadenpfuhl, K. & Adams, C. S. Unravelling the structures in the van der Waals interactions of alkali Rydberg atoms. Phys. Rev. A 111, 062803 (2025).

  41. Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Staszewski, L. & Wietek, A. Quench dynamics of stripes and phase separation in the two-dimensional t-J model. Phys. Rev. B 112, 035125 (2025).

    Article  CAS  Google Scholar 

  43. White, S. R. & Scalapino, D. J. Phase separation and stripe formation in the two-dimensional tJ model: a comparison of numerical results. Phys. Rev. B 61, 6320 (2000).

    Article  CAS  Google Scholar 

  44. Kagan, M. Y., Kugel, K. I. & Rakhmanov, A. L. Electronic phase separation: recent progress in the old problem. Phys. Rep. 916, 1–105 (2021).

    Article  CAS  Google Scholar 

  45. Ji, G. et al. Coupling a mobile hole to an antiferromagnetic spin background: transient dynamics of a magnetic polaron. Phys. Rev. X 11, 021022 (2021).

    CAS  Google Scholar 

  46. Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Weber, S. et al. Tutorial: Calculation of Rydberg interaction potentials. J. Phys. B: At. Mol. Opt. Phys. 50, 133001 (2017).

    Article  Google Scholar 

  48. Marder, M., Papanicolaou, N. & Psaltakis, G. C. Phase separation in a t-J model. Phys. Rev. B 41, 6920 (1990).

    Article  CAS  Google Scholar 

  49. Bobroff, J. et al. Absence of static phase separation in the high Tc cuprate YBa2Cu3O6+y. Phys. Rev. Lett. 89, 157002 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Daley, A. J. Quantum trajectories and open many-body quantum systems. Adv. Phys. 63, 77–149 (2014).

    Article  CAS  Google Scholar 

  51. Hauschild, J. et al. Tensor network Python. Code available at https://github.com/tenpy/tenpy/. Documentation available at https://tenpy.readthedocs.io/en/latest/ (2018).

  52. Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/scipostphyslectnotes.5 (2018).

Download references

Acknowledgements

We thank J. Mögerle, K. Brechtelsbauer and H.-P. Büchler for insightful discussions about encoding spins using three Rydberg states and J. Mögerle for help on the use of the pairinteraction software package47. This work is supported by the Agence Nationale de la Recherche (ANR-22-PETQ-0004 France 2030, project QuBitAF), the European Research Council (Advanced Grant no. 101018511-ATARAXIA) and the Horizon Europe programme HORIZON-CL4-2022-QUANTUM-02-SGA (project 101113690 (PASQuanS2.1). R.M. acknowledges support by the ‘Fondation CFM pour la Recherche’ through a Jean-Pierre Aguilar PhD scholarship. L.H. is supported by the Simons Collaboration on Ultra-Quantum Matter, which is a grant from the Simons Foundation (651440). L.H. and F.G. were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2111 - 390814868 and have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 948141) – ERC Starting Grant SimUcQuam. S.H. acknowledges support through the Harvard Quantum Initiative Postdoctoral Fellowship in Quantum Science and Engineering. S.G. acknowledges support by Structures (DFG) under Germany’s Excellence Strategy EXC2181/1-390900948). D.B. acknowledges support from MCIN/AEI/10.13039/501100011033 (PID2020-119667GA-I00, CNS2022-135781, EUR2022-134067 and European Union NextGenerationEU PRTR-C17.I1).

Author information

Authors and Affiliations

Authors

Contributions

M.Q., G.E., C.C., G.B. and R.M. carried out the experiments, with the help of B.G., L.K. and D.B. L.H. and M.Q. conducted the numerical simulations. L.H., S.H., S.G. and N.-C.C. devised the Rydberg scheme combining dipolar and van der Waals couplings to realize the tJ model. A. Bohrdt, F.G., T.L. and A. Browaeys supervised the work. All authors contributed to the data analysis, progression of the project and on both the experimental and theoretical sides. All authors contributed to the writing of the manuscript. Correspondence and requests for materials should be addressed to Antoine Browaeys or Mu Qiao.

Corresponding authors

Correspondence to Mu Qiao or Antoine Browaeys.

Ethics declarations

Competing interests

A. Browaeys and T.L. are cofounders and shareholders of PASQAL. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Xiong-Jun Liu, Ivan Morera Navarro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Protocol for the preparation of a doped antiferromagnet along z.

a, Involved energy levels and transitions. The states used in the mapping to the tJV Hamiltonian are indicated in black. Each of the three columns represents one class of atoms: non-addressed atoms (left column) are prepared in |↓, atoms with both δ and δ light shifts (centre column) are prepared in |h and atoms with only the δ light shift (right column) are prepared in |↑. b, Experimental sequence. After Rydberg excitation using STIRAP, we apply a sequence of microwave pulses combined with the site-resolved light shifts δ and δ. Then, the light shifts are switched off for duration T, during which the system evolves under the tJV interactions. To read out the atomic states, we first perform two ‘freezing’ pulses to stop the dynamics, which respectively act on states |h and |↑. Then, we deexcite the atoms from |↓ to the ground-state manifold, switch on the tweezers and image the recaptured atoms using fluorescence. An extra microwave π-pulse (dotted green line) can be used to read out the state |h.

Extended Data Fig. 2 Simplified error tree associated to our detection schemes.

The three panels a, b and c show the detection errors for the populations in, respectively, |g, |↓ and |h. For each scheme, we represent the probability of detection events for the four states |g, |↓, |h and |↑, at the first order in the detection errors ε, \({\varepsilon }_{S,P}^{{\prime} }\) and ηMW.

Extended Data Fig. 3 State-preparation errors for 1D chain.

Site-resolved population measurements for different initial state preparations at various angles θ relative to the quantization axis, showing the initial state-preparation error. The detection error is corrected through the maximal likelihood method, using the cost function of equation (4). ac, Population distributions for an initial Néel state with four holes in the centre at θ = 30° (a), θ = 45° (b) and θ = 54° (c). df, population distributions for different numbers of holes at θ = 51.7°: one hole (d), two holes (e) and four holes (f). gj Population distributions for different magnetic backgrounds: AFM along z at θ = 49.7° (g) and θ = 59.7° (h) and AFM and FM along x (i,j). The measured populations are shown for the four possible states: ground state (black), |↓ (red), |h (white) and |↑ (blue). These errors are systematically included in all of the numerical simulations presented in the main text.

Extended Data Fig. 4 State-preparation errors for 2D array.

a, Population measurement for a FM state (red) with a single hole |h (white) at the centre. b, Population measurement for a Néel-ordered state alternating between |↑ (blue) and |↓ (red) with a central hole. The pie charts at each site show the relative populations of the four possible states: ground state (black), |↓ (red), |h (white) and |↑ (blue). Detection errors have been corrected using a maximum likelihood estimation method. The observed state-preparation fidelities are incorporated into the numerical simulations presented in the main text.

Extended Data Fig. 5 Angular dependence of interactions.

a, The van der Waals interaction coefficients \({C}_{6}^{\alpha \beta }({\theta }_{ij})\) are calculated from the Rydberg pair interactions at a magnetic field magnitude of B = 50 G for various angles θij between the inter-atomic axis and the magnetic field (solid markers). We fit the each coefficient to the function \({f}^{\alpha \beta }({\theta }_{ij})={F}_{1}^{\alpha \beta }+{F}_{2}^{\alpha \beta }{\cos }^{2}{\theta }_{ij}+{F}_{3}^{\alpha \beta }{\cos }^{4}{\theta }_{ij}\) (solid line). b, The coupling amplitudes of the tJVW model are computed using Extended Data Table 1. The spin–hole interaction W/J ≈ 0 for all angles and hence we can neglect it for all practical purposes in our interpretation of the experimental results. Note that numerical calculations are based on the full Rydberg Hamiltonian.

Extended Data Fig. 6 Boundary terms.

Site-dependent field terms \({h}_{j}^{z}\) and μj calculated as in Fig. 5. a, Fields at angle θ = 90° for the 12-site chain realized in the experiment. As the difference in magnitude between the fields at the boundary compared with the bulk is large, those terms can play a role in the presence of boundaries. b, To quantify the boundary terms, we plot the difference of the fields between sites 2 and 1 as a function of the angle θ.

Extended Data Fig. 7 Interference from NNN tunnellings t′.

We numerically study the time evolution of an initial hole pair in the L = 12 z-AFM without errors under: (1) the full Rydberg Hamiltonian and (2) a model with interactions truncated beyond the NN couplings. The angles are chosen to be θ = 49.7° (t < 0) and θ = 59.7° (t > 0) (see Fig. 3). a, We plot the centre-of-mass pair displacement of the pair. The solid line corresponds to model (1) and corresponds to an ideal experiment without errors; the difference in the centre-of-mass pair displacement is clearly visible, which we explain by the interference between perturbative and NNN tunnelling t′. When we consider the model with only NN couplings (2), shown as dashed lines, the strong difference in the pair displacement disappears. b, We compare the pair distance histograms at time \(T=1.6\times \frac{2{\rm{\pi }}}{| 2t| }\) and find that the hole is more tightly bound for θ = 49.7° than for θ = 59.7°, independent of the range of tunnellings. This is consistent with our perturbative description of the pair, for which the binding energy only depends on the hole–hole repulsion V and spin interaction Jz.

Extended Data Table 1 Mapping of interaction strengths
Extended Data Table 2 Interaction strengths of the bosonic tJV model

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, M., Emperauger, G., Chen, C. et al. Realization of a doped quantum antiferromagnet in a Rydberg tweezer array. Nature 644, 889–895 (2025). https://doi.org/10.1038/s41586-025-09377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09377-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing