Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates

Abstract

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2′-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer’s disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimization of the siRNA design for CNS delivery in the rat.
Fig. 2: Characterization of the C16-siRNA in rat CNS.
Fig. 3: Translation of C16-siRNA activity in NHP CNS.
Fig. 4: Efficacy of APP silencing in the CVN mouse model.
Fig. 5: Translation of C16-siRNA activity in NHP eye.
Fig. 6: C16-siRNA distribution and activity in mouse lung.

Similar content being viewed by others

Data availability

All datasets generated and analyzed in the study are provided within the manuscript files. Source data are provided with this paper.

References

  1. Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Kristen, A. V. et al. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener. Dis. Manag. 9, 5–23 (2019).

    Article  PubMed  Google Scholar 

  4. Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Raal, F. J. et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N. Engl. J. Med. 382, 1520–1530 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, Y. et al. Blood–brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gregory, J. V. et al. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat. Commun. 11, 5687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eyford, B. A. et al. A nanomule peptide carrier delivers siRNA across the intact blood–brain barrier to attenuate ischemic stroke. Front. Mol. Biosci. 8, 611367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagata, T. et al. Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS. Nat. Biotechnol. 39, 1529–1536 (2021).

  18. Gupta, A., Kafetzis, K. N., Tagalakis, A. D. & Yu-Wai-Man, C. RNA therapeutics in ophthalmology—translation to clinical trials. Exp. Eye Res. 205, 108482 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. DeVincenzo, J. et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc. Natl Acad. Sci. USA 107, 8800–8805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chappell, A. E. et al. Mechanisms of palmitic acid-conjugated antisense oligonucleotide distribution in mice. Nucleic Acids Res. 48, 4382–4395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Q. et al. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J. Control. Release 144, 227–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Manoharan, M. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. 12, 103–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25, 1149–1157 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Schlegel, M. K. et al. Chirality dependent potency enhancement and structural impact of glycol nucleic acid modification on siRNA. J. Am. Chem. Soc. 139, 8537–8546 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Parmar, R. et al. 5′-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. ChemBioChem 17, 985–989 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Sullivan, J. M. et al. Convective forces increase rostral delivery of intrathecal radiotracers and antisense oligonucleotides in the cynomolgus monkey nervous system. J. Transl. Med. 18, 309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilcock, D. M. et al. Progression of amyloid pathology to Alzheimer’s disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J. Neurosci. 28, 1537–1545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Colton, C. A. et al. mNos2 deletion and human NOS2 replacement in Alzheimer disease models. J. Neuropathol. Exp. Neurol. 73, 752–769 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Kan, M. J. et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J. Neurosci. 35, 5969–5982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hall, H. et al. Magnetic resonance spectroscopic methods for the assessment of metabolic functions in the diseased brain. Curr. Top. Behav. Neurosci. 11, 169–198 (2012).

    Article  PubMed  Google Scholar 

  31. Su, L. et al. Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer’s disease and dementia with Lewy bodies. Transl. Psychiatry 6, e877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, H. et al. Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J. Alzheimers Dis. 46, 1049–1070 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Janas, M. M. et al. Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc-siRNA conjugates. Nucleic Acids Res. 47, 3306–3320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Osborn, M. F. & Khvorova, A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther. 28, 128–136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biscans, A. et al. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res. 47, 1082–1096 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Raouane, M., Desmaele, D., Urbinati, G., Massaad-Massade, L. & Couvreur, P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug. Chem. 23, 1091–1104 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Kubo, T. et al. Palmitic acid-conjugated 21-nucleotide siRNA enhances gene-silencing activity. Mol. Pharm. 8, 2193–2203 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Byrne, M. et al. Novel hydrophobically modified asymmetric RNAi compounds (sd-rxRNA) demonstrate robust efficacy in the eye. J. Ocul. Pharmacol. Ther. 29, 855–864 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. DiFiglia, M. et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc. Natl Acad. Sci. USA 104, 17204–17209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alterman, J. F. et al. Hydrophobically modified siRNAs silence Huntingtin mRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids 4, e266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nikan, M. et al. Docosahexaenoic acid conjugation enhances distribution and safety of siRNA upon local administration in mouse brain. Mol. Ther. Nucleic Acids 5, e344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beaucage, S. L. Solid-phase synthesis of siRNA oligonucleotides. Curr. Opin. Drug Discov. Dev. 11, 203–216 (2008).

    CAS  Google Scholar 

  43. Zhang, L., Peritz, A. & Meggers, E. A simple glycol nucleic acid. J. Am. Chem. Soc. 127, 4174–4175 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, L., Peritz, A. E., Carroll, P. J. & Meggers, E. Synthesis of glycol nucleic acids. Synthesis 2006, 645–653 (2006).

    Article  Google Scholar 

  45. Schlegel, M. K. & Meggers, E. Improved phosphoramidite building blocks for the synthesis of the simplified nucleic acid GNA. J. Org. Chem. 74, 4615–4618 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. O’Shea, J. et al. An efficient deprotection method for 5′-[O,O-bis(pivaloyloxymethyl)]-(E)-vinylphosphonate containing oligonucleotides. Tetrahedron 74, 6182–6186 (2018).

    Article  Google Scholar 

  47. Kohonen, P. et al. A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury. Nat. Commun. 8, 15932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davis, J. et al. Early-onset and robust cerebral microvascular accumulation of amyloid β-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid β-protein precursor. J. Biol. Chem. 279, 20296–20306 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Laubach, V. E., Foley, P. L., Shockey, K. S., Tribble, C. G. & Kron, I. L. Protective roles of nitric oxide and testosterone in endotoxemia: evidence from NOS-2-deficient mice. Am. J. Physiol. 275, H2211–H2218 (1998).

    CAS  PubMed  Google Scholar 

  50. Li, J. et al. Discovery of a novel deaminated metabolite of a single-stranded oligonucleotide in vivo by mass spectrometry. Bioanalysis 11, 1955–1965 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, J. et al. Oligonucleotide quantification and metabolite profiling by high-resolution and accurate mass spectrometry. Bioanalysis 11, 1967–1980 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Bolon, B. et al. STP position paper: recommended practices for sampling and processing the nervous system (brain, spinal cord, nerve, and eye) during nonclinical general toxicity studies. Toxicol. Pathol. 41, 1028–1048 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Alnylam’s Medicinal Chemistry Team, Medium Scale Synthesis Team, High Throughput Synthesis Team and Duplex Annealing Team for siRNA synthesis. They also thank A. Bisbe, P. Miller and R. Malone for siRNA purification; C. Wong, S. Maczko, M. Mendez, I. Duarte and D. Rooney for in vivo study support; A. Guan for tissue processing; J. Varao for sample management; B. Fitzsimmons for tissue drug concentration analysis; B. Carito, P. Gedman, C.-E. Stephany and K. Bittner for histology support; Alnylam’s Research Analytical Team for metabolic stability studies; and the research team at CRL Finland, especially J. Puolivali and F. Khan.

Author information

Authors and Affiliations

Authors

Contributions

K.M.B., J.K.N., M.M.J., S.M., M.K., C.B, D.F., K.F., M.A.M. and V.J. conceived the projects. K.M.B., J.K.N., M.M.J., S.M., Y.I.A.-R., L.T.H.D., H.P., C.S.T., E.C.-R., C.B., D.F., J.K., J.A., A.C., M.K.S., I.Z., M.K., M.A.M. and V.J. contributed to experimental design. L.T.H.D., H.P., C.S.T., E.C.-R., C.B., D.F., J.K., J.A., R.M., J.L., S.M., M.S., T.C., M.J., K.W., J.R., L.W., A.K., D.G., M.W.M., J.P., R.M., T.R., J.B., D.C., S.A., L.J., Y.J., S.L., J.G., T.N., S.C., S.L.B, U.P., A.K., A.B.R. and S.C. contributed experimentally. R.M., J.E.S. and W.D. provided non-human primate evaluations. C.S.T., T.C., K.W., J.R. and L.W. synthesized the duplexes. K.M.B., J.K.N., M.M.J., Y.I.A.-R., L.T.H.D., M.M., K.F., J.-T.W., M.A.M. and V.J. wrote the manuscript.

Corresponding authors

Correspondence to Martin A. Maier or Vasant Jadhav.

Ethics declarations

Competing interests

All authors are, or were during the time this work was conducted, employees of Alnylam Pharmaceuticals, with salary and stock options.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Histopathological evaluation of the nonhuman primate (NHP) spinal cord at three months following a single IT dose of 60 mg C16-siRNA.

Representative H&E (a), LFB (b) and IBA-1 (c) staining of NHP thoracic spinal cord. Microscopic findings in the spinal cord were limited to procedure-related changes (that is, IT bolus administration in lumbar region). These consisted of minimal to mild degeneration of nerve fibers with dilated axonal sheaths and few digestion chambers containing gitter cells (arrowheads) that were localized to the white matter of spinal cord (cervical, thoracic, and lumbar segments). Limited to procedure-affected areas, there were minimal decreases in LFB staining intensity (arrows) and a minimal increase in the number of IBA-1 (brown chromogen) positive microglia (open arrows). Three animals were analyzed per group with similar results. GM = grey matter; WM = white matter.

Extended Data Fig. 2 Histopathological evaluation of the nonhuman primate (NHP) brain at three months following a single IT dose of 60 mg C16-siRNA.

Representative H&E (a), LFB (b) and IBA-1 (c) staining of NHP brainstem (medulla oblongata region adjacent to aqueduct and underlying pons). Microscopic findings in the brain were limited to procedure-related changes (that is, CSF collection from cisterna magna). These consisted of minimal to mild degeneration of nerve fibers with dilated axonal sheaths and few digestion chambers containing gitter cells (arrowheads) that were localized to the peripheral white matter areas. Limited to procedure-affected areas, there were minimal decreases in LFB staining intensity (arrows) and a minimal increase in the number of IBA-1 (purple chromogen) positive microglia (open arrows). Three animals were analyzed per group with similar results.

Extended Data Fig. 3 Histopathological evaluation of the nonhuman primate (NHP) liver at three months following a single IT dose of 60 mg C16-siRNA.

Representative H&E staining of NHP liver (H = hepatocyte; S = sinusoid; KC = Kupffer cell). There were no remarkable microscopic findings. Three animals were analyzed per group with similar results.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Discussion

Reporting Summary

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.M., Nair, J.K., Janas, M.M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat Biotechnol 40, 1500–1508 (2022). https://doi.org/10.1038/s41587-022-01334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-022-01334-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research