Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic perturbation screens identify regulators of inflammatory macrophage states and a role for TNF mRNA m6A modification

Abstract

Macrophages exhibit remarkable functional plasticity, a requirement for their central role in tissue homeostasis. During chronic inflammation, macrophages acquire sustained inflammatory ‘states’ that contribute to disease, but there is limited understanding of the regulatory mechanisms that drive their generation. Here we describe a systematic functional genomics approach that combines genome-wide phenotypic screening in primary murine macrophages with transcriptional and cytokine profiling of genetic perturbations in primary human macrophages to uncover regulatory circuits of inflammatory states. This process identifies regulators of five distinct states associated with key features of macrophage function. Among these regulators, loss of the N6-methyladenosine (m6A) writer components abolishes m6A modification of TNF transcripts, thereby enhancing mRNA stability and TNF production associated with multiple inflammatory pathologies. Thus, phenotypic characterization of primary murine and human macrophages describes the regulatory circuits underlying distinct inflammatory states, revealing post-transcriptional control of TNF mRNA stability as an immunosuppressive mechanism in innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Funneled CRISPR screening approach for regulators of inflammatory macrophage states in primary cells.
Fig. 2: Target genes modulate a spectrum of regulatory circuits controlling macrophage states.
Fig. 3: Selected target genes promote distinct cytokine secretion profiles.
Fig. 4: WTAP associates with P03, a TNF-driven inflammatory macrophage state across disease conditions.
Fig. 5: ZC3H13-perturbed or WTAP-perturbed hMDMs promote TNF-dependent paracrine effects.
Fig. 6: TNF mRNA is m6A-modified.
Fig. 7: PheWAS analysis of genomic locations predicted to affect m6A installation on TNF mRNA.
Fig. 8: m6A-mediated regulation of TNF mRNA.

Similar content being viewed by others

Data availability

Datasets generated in this study have been deposited to the Gene Expression Omnibus (GSE210338, GSE210619, GSE210950, GSE268351, GSE268352, GSE268353, GSE268354 and GSE270634) and EGAS00001006485. Source data are provided with this paper.

Code availability

Code relevant to this project has been deposited in GitHub (https://github.com/Genentech/Haag_ng_2024) and Zenodo (https://zenodo.org/doi/10.5281/zenodo.13836037)93.

References

  1. Varol, C., Mildner, A. & Jung, S. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Locati, M., Curtale, G. & Mantovani, A. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. Mech. Dis. 15, 123–147 (2019).

    Article  Google Scholar 

  4. Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi, H., Doench, J. G. & Chi, H. CRISPR screens for functional interrogation of immunity. Nat. Rev. Immunol. 23, 363–380 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2, 8 (2022).

    Article  CAS  Google Scholar 

  10. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, K. et al. IFN-γ selectively suppresses a subset of TLR4-activated genes and enhancers to potentiate macrophage activation. Nat. Commun. 10, 3320 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Glass, C. K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Li, X. et al. Coordinated chemokine expression defines macrophage subsets across tissues. Nat. Immunol. 25, 1110–1122 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Li, X. et al. A tumor necrosis factor-α-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 14, 863–868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gardner, K. D., Burnside, J. S., Elzinga, L. W. & Locksley, R. M. Cytokines in fluids from polycystic kidneys. Kidney Int. 39, 718–724 (1991).

    Article  PubMed  Google Scholar 

  23. Zhou, J. X., Fan, L. X., Li, X., Calvet, J. P. & Li, X. TNFα signaling regulates cystic epithelial cell proliferation through Akt/mTOR and ERK/MAPK/Cdk2 mediated Id2 signaling. PLoS ONE 10, e0131043 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Freund, E. C. et al. Efficient gene knockout in primary human and murine myeloid cells by non-viral delivery of CRISPR–Cas9. J. Exp. Med. 217, e20191692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freund, E. C., Haag, S. M., Haley, B. & Murthy, A. Dendritic dells, methods and protocols. Methods Mol. Biol. 2618, 201–217 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Murakami, S. & Jaffrey, S. R. Hidden codes in mRNA: control of gene expression by m6A. Mol. Cell 82, 2236–2251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gilbertson, S. E. et al. Topologically associating domains are disrupted by evolutionary genome rearrangements forming species-specific enhancer connections in mice and humans. Cell Rep. 39, 110769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marine, J.-C. Spotlight on the role of COP1 in tumorigenesis. Nat. Rev. Cancer 12, 455–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Franke, A. et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 40, 1319–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Koch, A. E. et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J. Clin. Invest. 90, 772–779 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qian, B.-Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Satoh, T. et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495, 524–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Wertz, I. E. et al. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371–1374 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, L. et al. Chemokine signaling pathway involved in CCL2 expression in patients with rheumatoid arthritis. Yonsei Med. J. 56, 1134–1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao, X. et al. Osteopontin links myeloid activation and disease progression in systemic sclerosis. Cell Rep. Med. 1, 100140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, S., Tanaka, T., Narazaki, M. & Kishimoto, T. Targeting interleukin-6 signaling in clinic. Immunity 50, 1007–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Weber, B., Saurer, L. & Mueller, C. Intestinal macrophages: differentiation and involvement in intestinal immunopathologies. Semin. Immunopathol. 31, 171–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Jiang, X. et al. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther. 6, 74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin, H. et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat. Commun. 12, 1394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai, Y., Yu, R., Kong, Y., Feng, Z. & Xu, Q. METTL3 regulates LPS-induced inflammatory response via the NOD1 signaling pathway. Cell. Signal. 93, 110283 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Du, J. et al. N6-Adenosine methylation of Socs1 mRNA is required to sustain the negative feedback control of macrophage activation. Dev. Cell 55, 737–753.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Y. et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am. J. Physiol. Cell Physiol. 317, C762–C775 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Tong, J. et al. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation. Sci. Adv. 7, eabd4742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qin, Y. et al. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep. 37, 109968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dong, L. et al. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth. Cancer Cell 39, 945–957.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, S., Carss, K. J., Halldorsson, B. V., Cortes, A. & UK Biobank Whole-Genome Sequencing Consortium. Whole-genome sequencing of half-a-million UK Biobank participants. Preprint at medRxiv https://doi.org/10.1101/2023.12.06.23299426 (2023).

  53. Muto, Y. et al. Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nat. Commun. 13, 6497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, J. et al. m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed. Pharmacother. 159, 114298 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Nie, K. et al. A broad m6A modification landscape in inflammatory bowel disease. Front. Cell Dev. Biol. 9, 782636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Valenzi, E. et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 1379–1387 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Devlin, J. C. et al. Single-cell transcriptional curvey of ileal–anal pouch immune cells from ulcerative colitis patients. Gastroenterology 160, 1679–1693 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Verma, A. et al. PheWAS and beyond: the landscape of associations with medical diagnoses and clinical measures across 38,662 individuals from Geisinger. Am. J. Hum. Genet. 102, 592–608 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Callow, M. G. et al. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death Dis. 9, 261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ting, P. Y. et al. Guide swap enables genome-scale pooled CRISPR–Cas9 screening in human primary cells. Nat. Methods 15, 941–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Hoberecht, L., Perampalam, P., Lun, A. & Fortin, J.-P. A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nat. Commun. 13, 6568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. SIMES, R. J. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–754 (1986).

    Article  Google Scholar 

  70. Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363–1375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Holland, C. H. et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Replogle, J. M. et al. Mapping information-rich genotype–phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hitz, B. C. et al. The ENCODE uniform analysis pipelines. Preprint at bioRxiv https://doi.org/10.1101/2023.04.04.535623 (2023).

  78. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  79. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eggertsson, H. P. et al. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. Nat. Commun. 10, 5402 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Nostrand, E. L. V. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hubley, R. et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 44, D81–D89 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Krakau, S., Richard, H. & Marsico, A. PureCLIP: capturing target-specific protein–RNA interaction footprints from single-nucleotide CLIP–seq data. Genome Biol. 18, 240 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Melo Carlos, S. Genentech/Haag_ng_2024: indexing in Zenodo. Zenodo https://doi.org/10.5281/zenodo.13836038 (2024).

Download references

Acknowledgements

We are grateful for the cooperation of Donor Network West and all of the organ and tissue donors and their families for giving the gift of life and the gift of knowledge by their generous donation. We thank W. A. Faubion at the Mayo Clinic for his long-standing collaboration and patient samples. We thank members of the Next Generation Sequencing Facility, I. Lehoux and Z. R. Li, for their support in construct design; Eclipse BioInnovations for performing m6A-seq and analysis; and L. Taraborrelli, R. M. Leitão, J. Lim and members of the Cancer Immunology and Immunology Discovery departments at Genentech for technical and intellectual support. The PheWAS analysis was conducted using the UK Biobank Resource under application number 44257.

Author information

Authors and Affiliations

Authors

Contributions

S.M.H., S.X., C.E., J.A.K., J.L., M. Callow, L.H., M.T., C.J.B. and C.C. designed and performed experiments, and analyzed and interpreted data. S.M.C., R.N.P. and S.Z.W. analyzed and interpreted data. A.L., J.-P.F. and M. Costa analyzed genome-wide CRISPR screen datasets. B.L.Y. and H.A.H. performed PheWAS analysis. E.F. and A.N. provided reagents. S.M., M.K., S.J.T. and K.G.-S. provided essential conceptual input. S.M.H. and A.M. conceptualized the study. S.M.H. wrote the paper with input from all authors. S.J.T. and A.M. oversaw the project.

Corresponding authors

Correspondence to Sandra Melo Carlos, Shannon J. Turley or Aditya Murthy.

Ethics declarations

Competing interests

S.M.H., S.M.C., S.X., C.E., M. Callow, M. Costa, C.C., A.L., J.-P.F., M.K., L.H., E.F., A.N., S.Z.W., B.L.Y., H.A.H., R.N.P., K.G.-S., C.J.B., M.T., S.M. and S.J.T. are employees of Genentech. A.M. is an employee of Gilead Sciences. J.A.K. is an employee of Alector Therapeutics. J.L. is an employee of Sana Biotechnology.

Peer review

Peer review information

Nature Genetics thanks Musa Mhlanga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Screening design in BMDMs.

a, Flow cytometry analysis of mBMDMs primed with IFN-γ in indicated concentrations. b, Flow cytometry analysis of intracellular TNFα and iNOS expression in mBMDMs stimulated as indicated. c, Heatmap of differentially expressed genes between each of the four comparisons in mBMDMs across 3 mice. d, Gating strategy to sort for ‘iNOS_high’ cells corresponding to Fig. 1b.

Extended Data Fig. 2 Quality controls for genome-wide CRISPR screen in mBMDMs.

a, sgRNA drop out of essential genes across 3 individual screens (replicates 1 - 3). Whiskers represent the minimum and maximum (unless points extend 1.5 * IQR from the hinge, then shown as individual points), the box represents the interquartile range, and the center line represents the median. b, gRNA-level log2-fold changes of representative genes. Vertical dotted gray line represents the median of control sgRNAs. Red and blue lines indicate enriched or depleted sgRNA rank for each indicated gene respectively. c, Flow cytometry of intracellular iNOS expression levels in perturbed mBMDMs as indicated (n = 2).

Extended Data Fig. 3 PCA and permuted energy distance test.

a, Individual gene ranking of PC1. b, variance ratio of PCA. c, Bona-fide monocyte and macrophage signature score in UMAP projection. d, scatter plot of the energy distance against the number of differentially expressed genes (DEG) calculated as pairwise comparison to NTC. Each dot represents a perturbation. Perturbations with significant effects (energy distance; FDR < 0.01, DEGs; FDR < 0.05) indicated in blue, non-significant in red. e, cluster map of cosine similarity between perturbations. Rows and columns are hierarchically clustered. Perturbations with significant effects as determined in (d) indicated in blue, non-significant in red.

Extended Data Fig. 4 LDA-derived programs and effect sizes across all perturbations.

a, LDA-derived programs. Feature plot of program expression scores and the top correlated genes within each program. b, Program enrichment upon IFN-γ priming. c, Genetic perturbation effects across programs compared to NTC control in IFN-γ primed conditions. b, c, Dot color represents effect size, and dot size corresponds to negative base 10 log (P value). P values determined by two-sided t-test.

Extended Data Fig. 5 Regulon analysis on perturbed hMDMs.

a, TF activity scores (color bar) of TFs (rows) in perturbed hMDMs (column) upon IFN-γ priming. P values determined by two-sided t-test. b, Motif enrichments were computed using the hypergeometric test as implemented in HOMER (log2FC > 1 and P value < 0.05) in ZC3H13- and WTAP-perturbed hMDMs against NTC-perturbed control cells in IFN-γ stimulated conditions (individual measurement of n = 3 donors). c, hMDMs cultivated in normoxic or hypoxic conditions for 24 h, followed by SPP1 measurements in supernatants using Luminex. Each symbol represents an individual measurement of n = 2 donors.

Extended Data Fig. 6 Additional cytokine secretion analysis.

a, Heatmap as shown in Fig. 3a with additional cytokine and chemokine values upon IFN-γ stimulation. Z-score scaling for each cytokine or chemokine shown for two individual donors. b, TNF expression in UMAP projection. c, Gene expression of CCL3, CCL4, and CXCL8 assessed by qPCR of perturbed hMDMs 18 h after IFN-γ priming with and without addition of TNFRII-Fc in culture medium; each symbol represents an individual donor (n = 5). Summary data of 3 individual experiments are shown as mean, with P values determined by one-way ANOVA with Sidak’s multiple comparisons test. d, Heatmap showing P03 genes in non-stimulated, IFN-γ primed and IFN-γ and TNFα co-stimulated cells in hMDMs, each column represents an individual donor (n = 3).

Extended Data Fig. 7 Perturbation of METTL3 and METTL14 in hMDMs elevate TNFα secretion.

a, Western blot of METTL3 perturbed with sgRNAs utilized in scCRISPR screen (sgMETTL3) and quantification of full length METTL3 (FL) (right). b, Western blot of METTL3 perturbed with sgRNAs targeting exon 5 (sgMETTL3_ex5.1 and sgMETTL3_ex5.2) and exon 6 (sgMETTL3_ex6). c, TNFα cytokine release and d, mean P03 of METTL3 perturbed cells using sgMETTL3_ex6. e, Western blot of METTL14 perturbed with sgRNAs utilized in scCRISPR screen (sgMETTL14) and (sgMETTL14_F). f, TNFα cytokine release in METTL14 perturbed hMDMs using sgMETTL14_F. a, c, d, f, Each symbol represents an individual donor (a, n = 3) (c, d and f n = 5). Summary data are shown as mean, with P values determined by Student two-sided t-test (c, d, f). a, representative Western blot image of 3 donors, b and e of 2 donors.

Extended Data Fig. 8 Genomic visualization of m6A-eCLIP.

a, Expression of P03 in NTC-, WTAP- and ZC3H13-perturbed hMDMs across indicated treatment conditions. Box plots represent the median and interquartile range, with whiskers indicating min and max values. b, c, Relative IL6 and IFNB1 mRNA levels upon ActinomycinD treatment in ZC3H13-depleted and NTC control cells. d, Normalized distribution of m6A peaks across 5’ UTR, CDS, and 3’UTR of perturbed hMDMs as indicated for two individual donors (1 and 2). Top motif enriched in m6A-eCLIP peaks derived from NTC control cells. e, Genomic visualization of normalized m6A-eCLIP signal along TNF, IL6 (f) and IFNB1 (g) in perturbed hMDMs as indicated for two individual donors (1 and 2); vertical red lines depict m6A residues h, TNFα cytokine levels determined by Luminex analysis of cell culture media of perturbed hMDMs as indicated 18 h after LPS or IFN-γ stimulation. a, b, c and h Each symbol represents an individual donor (a and h, n = 4) (b and c n = 3). h, P values determined by Students two-sided t-test.

Supplementary information

Supplementary Information

Supplementary Notes and Methods.

Reporting Summary

Supplementary Data 1

sgRNA sequences of genome-wide screen.

Supplementary Data 2

sgRNA sequences.

Supplementary Table 1

PheWas.

Source data

Source Data

Unprocessed western blots.

Source Data

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haag, S.M., Xie, S., Eidenschenk, C. et al. Systematic perturbation screens identify regulators of inflammatory macrophage states and a role for TNF mRNA m6A modification. Nat Genet 56, 2493–2505 (2024). https://doi.org/10.1038/s41588-024-01962-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-024-01962-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing