Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nde1 promotes Lis1 binding to full-length autoinhibited human dynein 1

Abstract

Cytoplasmic dynein 1 (dynein) is the primary motor responsible for the retrograde transport of intracellular cargoes along microtubules. Activation of dynein requires the opening its autoinhibited Phi conformation, a process driven by Lis1 and Nde1/Ndel1. Using biochemical reconstitution and cryo-electron microscopy, we demonstrate that Nde1 enhances Lis1 binding to autoinhibited dynein and facilitates Phi opening. We identify a key intermediate in this activation pathway where a single Lis1 dimer binds between Phi-like (PhiL) motor rings. In this ‘PhiL–Lis1’ complex, Lis1 interacts with one motor domain through canonical sites at the AAA+ (adenosine triphosphatases associated with diverse cellular activities) ring and stalk, and with AAA5, AAA6 and linker regions of the other motor domain. Mutagenesis and motility assays confirm the critical role of the PhiL–Lis1 interface in dynein activation. This intermediate forms rapidly in the presence of Nde1, although Nde1 is not part of PhiL–Lis1. These findings provide key insights into how Nde1 promotes Lis1-mediated Phi opening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nde1 promotes Lis1 binding to Phi dynein and synergistically releases dynein autoinhibition.
Fig. 2: Structure of the PhiL–Lis1 complex.
Fig. 3: Lis1 induces a transition in the Phi conformation to accommodate its binding.
Fig. 4: Interactions identified between Lis1ring and MD-A in PhiL–Lis1.
Fig. 5: Comparison of the interface between MD-A and MD-B in Phi and PhiL–Lis1.
Fig. 6: Model for the initial stage of dynein activation by Nde1 and Lis1.

Similar content being viewed by others

Data availability

Cryo-EM density maps and models were deposited to the EM Data Bank and PDB under the following accession numbers: dynein and Lis1 condition, PDB 9E12 and EMD-47381 for full-length Phi, PDB 9E10 and EMD-47379 for the motor domains of Phi, PDB 9E13 and EMD-47382 for full-length PhiL–Lis1 and PDB 9E11 and EMD-47380 for motor domains of PhiL–Lis1; in the dynein, Lis1 and Nde1 condition, PDB 9E14 and EMD-47383 for full-length PhiL–Lis1 and PDB 9E0Z and EMD-47378 for motor domains of PhiL–Lis1. Source data are provided with this paper.

References

  1. Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McNally, F. J. Mechanisms of spindle positioning. J. Cell Biol. 200, 131–140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Markus, S. M., Marzo, M. G. & McKenney, R. J. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 9, e59737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Willemsen, M. H. et al. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J. Med Genet. 49, 179–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Scoto, M. et al. Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy. Neurology 84, 668–679 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poirier, K. et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat. Genet. 45, 639–647 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Guven, A., Gunduz, A., Bozoglu, T. M., Yalcinkaya, C. & Tolun, A. Novel NDE1 homozygous mutation resulting in microhydranencephaly and not microlyssencephaly. Neurogenetics 13, 189–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Lipka, J., Kuijpers, M., Jaworski, J. & Hoogenraad, C. C. Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem. Soc. Trans. 41, 1605–1612 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Eschbach, J. & Dupuis, L. Cytoplasmic dynein in neurodegeneration. Pharmacol. Ther. 130, 348–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Urnavicius, L. et al. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554, 202–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh, K. et al. Molecular mechanism of dynein–dynactin complex assembly by LIS1. Science 383, eadk8544 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Okada, K. et al. Conserved roles for the dynein intermediate chain and Ndel1 in assembly and activation of dynein. Nat. Commun. 14, 5833 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaaban, S. & Carter, A. P. Structure of dynein–dynactin on microtubules shows tandem adaptor binding. Nature 610, 212–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, K. et al. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169, 1303–1314(2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canty, J. T. & Yildiz, A. Activation and regulation of cytoplasmic dynein. Trends Biochem. Sci. 45, 440–453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao, L. & Gennerich, A. Structure and function of dynein’s non-catalytic Subunits. Cells 13, 330 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garrott, S. R. et al. Ndel1 disfavors dynein–dynactin–adaptor complex formation in two distinct ways. J. Biol. Chem. 299, 104735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nyarko, A., Song, Y. J. & Barbar, E. Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin. J. Biol. Chem. 287, 24884–24893 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McKenney, R. J., Weil, S. J., Scherer, J. & Vallee, R. B. Mutually exclusive cytoplasmic dynein regulation by NudE–Lis1 and dynactin. J. Biol. Chem. 286, 39615–39622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Carter, A. P., Cho, C., Jin, L. & Vale, R. D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Canty, J. T., Tan, R., Kusakci, E., Fernandes, J. & Yildiz, A. Structure and mechanics of dynein motors. Annu. Rev. Biophys. 50, 549–574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chai, P. et al. The mechanochemical cycle of reactive full-length human dynein 1. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01543-3 (2025).

  24. Cianfrocco, M. A., DeSantis, M. E., Leschziner, A. E. & Reck-Peterson, S. L. Mechanism and regulation of cytoplasmic dynein. Annu. Rev. Cell Dev. Biol. 31, 83–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Torisawa, T. et al. Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat. Cell Biol. 16, 1118–1124 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Garrott, S. R., Gillies, J. P. & DeSantis, M. E. Nde1 and Ndel1: outstanding mysteries in dynein-mediated transport. Front. Cell Dev. Biol. 10, 871935 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bradshaw, N. J., Hennah, W. & Soares, D. C. Nde1 and Ndel1: twin neurodevelopmental proteins with similar ‘nature’ but different ‘nurture’. Biomol. Concepts 4, 447–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monda, J. K. & Cheeseman, I. M. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Mol. Biol. Cell 29, 2336–2345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, Y., Oten, S. & Yildiz, A. Nde1 promotes Lis1-mediated activation of dynein. Nat. Commun. 14, 7221 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shu, T. Z. et al. Ndel1 operates in a common pathway with Lis1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Stehman, S. A., Chen, Y., McKenney, R. J. & Vallee, R. B. NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J. Cell Biol. 178, 583–594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, S. S. et al. Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis. Mol. Biol. Cell 24, 3522–3533 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. McKenney, R. J., Vershinin, M., Kunwar, A., Vallee, R. B. & Gross, S. P. Lis1 and NudE induce a persistent dynein force-producing state. Cell 141, 304–314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reiner, O. & Sapir, T. Lis1 functions in normal development and disease. Curr. Opin. Neurobiol. 23, 951–956 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a ‘clutch’ between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu, R. D., Zhang, J. & Xiang, X. Lis1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J. Cell Biol. 218, 3630–3646 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elshenawy, M. M. et al. Lis1 activates dynein motility by modulating its pairing with dynactin. Nat. Cell Biol. 22, 570–578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Htet, Z. M. et al. Lis1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat. Cell Biol. 22, 518–525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McKenney, R. J. Lis1 cracks open dynein. Nat. Cell Biol. 22, 515–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Karasmanis, E. P. et al. Lis1 relieves cytoplasmic dynein-1 autoinhibition by acting as a molecular wedge. Nat. Struct. Mol. Biol. 30, 1357–1364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ton, W. D. et al. Microtubule-binding-induced allostery triggers Lis1 dissociation from dynein prior to cargo transport. Nat. Struct. Mol. Biol. 30, 1365–1379 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kusakci, E. et al. Lis1 slows force-induced detachment of cytoplasmic dynein from microtubules. Nat. Chem. Biol. 20, 521–529 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Emes, R. D. & Ponting, C. P. A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum. Mol. Genet 10, 2813–2820 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Mateja, A., Cierpicki, T., Paduch, M., Derewenda, Z. S. & Otlewski, J. The dimerization mechanism of Lis1 and its implication for proteins containing the LisH motif. J. Mol. Biol. 357, 621–631 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Reimer, J. M., DeSantis, M. E., Reck-Peterson, S. L. & Leschziner, A. E. Structures of human dynein in complex with the lissencephaly 1 protein, Lis1. eLife 12, e84302 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marzo, M. G., Griswold, J. M. & Markus, S. M. Pac1/Lis1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat. Cell Biol. 22, 559–569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geohring, I. C. et al. A nucleotide code governs Lis1’s ability to relieve dynein autoinhibition. Preprint at bioRxiv https://doi.org/10.1101/2024.12.30.630615 (2024).

  50. Wynne, C. L. & Vallee, R. B. CDK1 phosphorylation of the dynein adapter Nde1 controls cargo binding from G2 to anaphase. J. Cell Biol. 217, 3019–3029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lam, C., Vergnolle, M. A., Thorpe, L., Woodman, P. G. & Allan, V. J. Functional interplay between Lis1, Nde1 and Ndel1 in dynein-dependent organelle positioning. J. Cell Sci. 123, 202–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y. F. et al. Nde1 is a Rab9 effector for loading late endosomes to cytoplasmic dynein motor complex. Structure 30, 386–395(2022).

    Article  CAS  PubMed  Google Scholar 

  53. Doobin, D. J., Helmer, P., Carabalona, A., Bertipaglia, C. & Vallee, R. B. The role of Nde1 phosphorylation in interkinetic nuclear migration and neural migration during cortical development. Mol. Biol. Cell 35, ar129 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pei, Z. et al. The expression and roles of Nde1 and Ndel1 in the adult mammalian central nervous system. Neuroscience 271, 119–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Derewenda, U. et al. The structure of the coiled-coil domain of Ndel1 and the basis of its interaction with Lis1, the causal protein of Miller–Dieker lissencephaly. Structure 15, 1467–1481 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Ye, F. et al. DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron 96, 1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moon, H. M. et al. Lis1 controls mitosis and mitotic spindle organization via the Lis1–Ndel1–dynein complex. Hum. Mol. Genet 23, 449–466 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Zylkiewicz, E. et al. The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits Lis1 to dynein. J. Cell Biol. 192, 433–445 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, S. S. & Zheng, Y. X. Identification of a novel dynein binding domain in nudel essential for spindle pole organization in Xenopus egg extract. J. Biol. Chem. 286, 587–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Efimov, V. P. Roles of NudE and NudF proteins of Aspergillus nidulans: insights from intracellular localization and overexpression effects. Mol. Biol. Cell 14, 871–888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Toropova, K. et al. Lis1 regulates dynein by sterically blocking its mechanochemical cycle. eLife 3, e03372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cianfrocco, M. A. et al. Lis1 has two distinct modes of regulating dynein’s mechanochemical cycle. Biophys. J. 112, 43A (2017).

    Article  Google Scholar 

  63. Gillies, J. P. et al. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife 11, e71229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jie, J., Lohr, F. & Barbar, E. Dynein binding of competitive regulators dynactin and NudE involves novel interplay between phosphorylation site and disordered spliced linkers. Structure 25, 421–433 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Schlager, M. A., Hoang, H. T., Urnavicius, L., Bullock, S. L. & Carter, A. P. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J. 33, 1855–1868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Urnavicius, L. et al. The structure of the dynactin complex and its interaction with dynein. Science 347, 1441–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kidmose, R. T. et al. Namdinator—automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the K.Z. and A.Y. laboratories for their valuable discussions. This work was funded by the National Institutes of Health (NIH) National Institute of General Medical Sciences (GM136414 to A.Y. and GM142959 to K.Z.) and in part by a Collaboration Development Award Program (to K.Z.) from the Pittsburgh Center for Human Immunodeficiency Virus Protein Interactions (U54AI170791). The cryo-EM data were collected at the Yale ScienceHill cryo-EM facility. We thank J. Lin and K. Zhou for assistance with the data collection. The Yale Cryo-EM Resource is funded in part by the NIH grant S10OD023603 awarded to F. J. Sigworth.

Author information

Authors and Affiliations

Authors

Contributions

K.Z. and A.Y. designed the study. J.Y. expressed and purified the dynein, Lis1 and Nde1 proteins for EM. J.Y. and P.C. prepared the cryo-EM samples, collected and processed the data and built the PDB models. P.C. and J.Y. processed the negative-stain EM data and quantified the particle numbers. Y.Z. performed the Lis1 mutagenesis, protein preparation, TIRF imaging and MP assays. J.Y., P.C., Y.Z., K.Z. and A.Y. analyzed the data and prepared the figures. J.Y., Y.Z., P.C., K.Z. and A.Y. wrote the paper.

Corresponding authors

Correspondence to Ahmet Yildiz or Kai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Richard McKenney and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 MP analysis of nucleotide conditions on Nde1 and Lis1 binding to WT dynein.

MP shows that under apo buffer (a), 0.1 mM ATP (b), ADP (c), ATP.vi (d), and AMPPNP (e) conditions, Nde1 promotes Lis1 binding to dynein, forming a 1:1 dynein-Lis1 (DL) complex. The nucleotide condition does not affect Nde1’s ability to tether Lis1 to dynein. Importantly, the formation of dynein-Nde1, dynein-Lis1-Nde1, and 1:2 dynein-Lis1 complexes was not observed. In the Lis1-alone condition, no significant DL complex was formed immediately.

Extended Data Fig. 2 Workflow for negative-stain EM data processing.

a, Representative micrographs for dynein alone (42 micrographs), dynein-Lis1 at 1:1 (41 micrographs), and dynein-Lis1 at 1:2 (47 micrographs) molar ratios from batch #1. b, Particle picking from representative micrographs in each dataset using a template matching approach based on Phi and open dynein models (particle diameter: 750 Å, distance cutoff: 400 Å). c, Three rounds of 2D classification were performed after extracting all particles (box size: 960 Å × 960 Å), yielding class averages of Phi dynein, open dynein motors, single motors, and junk particles. d, Final classified 2D averages showing Phi dynein (43.7%), two-motor open dynein (43.3%), and single-motor open dynein (13.0%). The particle numbers for each group were counted, and single motors were considered as open dynein by dividing the total number of particles by two.

Extended Data Fig. 3 Quantification of Phi-dynein percentage in the presence or absence of Lis1 and Nde1.

Dynein (D) was incubated with Lis1 (L), Nde1 (N), or both proteins for 90 minutes at the indicated molar ratios of protein dimers. The percentage of Phi-dynein was quantified under each condition, D + L (a), D + N (b), D + L + N (c). Colors represent independent biological replicates. n = 6 biological replicates for D:L = 1:1 and D:L = 1:2; n = 3 biological replicates for D:N = 1:1 and n = 4 biological replicates for D:N = 1:2; n = 4 biological replicates for D:L:N = 1:1:1 and D:L:N = 1:2:2. The control (Ctrl) corresponds to the Phi-dynein percentage measured in the dynein-alone condition.

Source data

Extended Data Fig. 4 Cryo-EM data processing for the dynein-Lis1 dataset.

a, A representative cryo-EM micrograph and the flowchart of cryo-EM data processing. b, Fourier Shell Correlation (FSC) curves showing the final resolution estimates for the motor domains of the Phi (2.71 Å) and PhiL-Lis1(2.86 Å) datasets. Orientation distribution of Phi (c) and PhiL-Lis1(d).

Extended Data Fig. 5 Cryo-EM data processing for the dynein-Lis1-Nde1 dataset.

a, A representative cryo-EM micrograph and the flowchart of cryo-EM data processing. b, FSC curve showing the final resolution estimate for the motor domains of the PhiL-Lis1 (2.88 Å) dataset. c, Comparison of Nde1’s effect on Lis1 binding to the open dynein motor. Cryo-EM particle numbers for open dynein-Lis1 and open dynein alone were quantified from the dynein-Lis1 and dynein-Lis1-Nde1 datasets. In the dynein-Lis1 dataset, 493,173 particles correspond to single dynein motors unbound to Lis1, and 624,475 particles correspond to dynein motors bound to Lis1 (including Lis1 dimers and monomers). In the dynein-Lis1-Nde1 dataset, 162,229 particles correspond to dynein motors unbound to Lis1, and 170,995 particles correspond to dynein motors bound to Lis1 (including Lis1 dimers and monomers), indicating that Nde1 does not promote Lis1 binding to the open dynein motor.

Extended Data Fig. 6 Comparison of local resolution, nucleotide binding in AAA1, AAA3, AAA4, and sensor-I loop conformation in MD-A of the Phi and PhiL-Lis1.

Local resolution, and nucleotide binding states in MD-A at AAA1, AAA3, and AAA4 of the Phi (a) and PhiL-Lis1 (b). MD-A and -B share the same nucleotide binding in AAA1, AAA3, and AAA4 across both the Phi and PhiL-Lis1. The sensor-I loop adopts almost the same conformation in MD-A (or -B) of both Phi (c) and PhiL-Lis1 (d), indicating that Lis1 binding does not affect phosphate release. The color scheme is the same as Fig. 4.

Extended Data Fig. 7 Density quality at the dynein MD-A and Lis1 interface in PhiL-Lis1.

a, Well-defined density at the AAA5-Lis1ring and AAA6-Lis1ring regions, showing tight and stable interactions. The color scheme for the motor domains is consistent with Fig. 4. b, Flexible density at the linker-Lis1ring interface, indicating dynamic interactions in this region.

Extended Data Fig. 8 Binding characterization of Lis1 mutants and structural prediction of Lis1Δ300–304.

a, MP profiles show binding of Lis1 mutants to open dynein. Open dynein and Lis1 mutants were mixed at a 1:2 ratio and incubated for 2 min prior to measurements. b, MP profiles show binding of the Lis1AAA6 mutant to dynein with Nde1 at different incubation times. Dynein, Lis1AAA6, and Nde1 were mixed at 1:2:2 ratio (D: dynein only, DL: one dynein and one Lis1, DL2N: one dynein, two Lis1s, and one Nde1) and incubated for 2, 6, and 15 minutes before the measurements. c, The percentages of mass populations detected in b. d, Overlay of AlphaFold3-predicted Lis1Δ300-304 and WT Lis1 bound to PhiL dynein motor domains. Lis1Δ300-304 is shown in violet, while WT Lis1 is colored green and sky blue. Dynein motors domains are displayed in grey and white. The structure overlay indicates that deletion of residues 300–304 in Lis1 surface loop does not induce notable conformational change of the rigid elements of Lis1Δ300-304.

Extended Data Fig. 9 Characterization of additional mutants of Lis1 at the PhiL-Lis1 interface.

a, MP profiles illustrate the interaction of Nde1 (N) with Lis1 mutants. Nde1 interacts with one (NL) or two (NL2) Lis1 dimers. b, MP of the binding of Lis1 mutants to open dynein. Dynein and Lis1 were incubated for 2 minutes at 1:2 ratio (D: dynein only, DL: one dynein and one Lis1). c. MP shows the binding of Lis1 mutants to dynein with or without Nde1. Dynein, Lis1 and Nde1 were incubated for 2 minutes at 1:2:2 ratio (DL2N: one dynein, two Lis1s, and one Nde1). d, Representative kymographs show the motility of WT DDR complexes with or without Nde1 and Lis1. e, Run frequency of WT DDR with or without Nde1 and Lis1 (mean ± s.d.; n = 30 MTs for each condition; statistics from two independent experiments). Results were normalized to the -Lis1, -Nde1 condition. P values are calculated from a two-tailed t-test.

Source data

Extended Data Fig. 10 Comparison of yeast Chi-Lis1 and human PhiL-Lis1 motor domains.

a, The structure of yeast Chi-Lis1 (PDB:8DZZ)41, showing two tail-truncated yeast dynein motor domains (grey) bound to two Lis1 dimers (colored, Chi-Lis1 1:2). b, Residues of MD-A that interact with Lis1ring are located in AAA6-Lis1ring and AAA5-Lis1ring regions and highlighted with dashed rectangle. Representative residues of MD-A involved in the canonical Lis1ring binding sites are located in Lis1ring-AAA3, Lis1ring-AAA4, Lis1ring-AAA5 and Lis1ring-stalk region. Interactions between MD-A and MD-B are in stalk-stalk region. Residues are displayed in sphere mode and are colored according to the subdomains in Fig. 4. c, Superimposition of the human PhiL-Lis1 and yeast Chi-Lis1 structures, showing that Chi-Lis1 adopts a more expanded conformation, with larger grooves on both the front and back sides compared to the more compact PhiL-Lis1 structure. Lis1 is hidden for clarity. Vectors represent interatomic distances of pairwise Cα atoms between the PhiL-Lis1 and Chi-Lis1 structures.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–4.

Reporting Summary

Supplementary Video 1

Full-length human dynein in PhiL conformation, bound to a Lis1 dimer and displaying the newly identified interface with Lis1.

Supplementary Video 2

Single-molecule motility recordings of WT DDR complexes, in the presence or absence of Nde1, WT Lis1 and Lis1 mutants. The fluorescence signal originates from BicDR1–mNeonGreen.

Source data

Source Data Fig. 1

Statistical source data of relative percentage of Phi dynein.

Source Data Fig. 4

Statistical source data of dynein motility under Lis1 mutants.

Source Data Extended Data Fig. 3

Statistical source data of Phi dynein percentage.

Source Data Extended Data Fig. 9

Statistical source data of dynein motility under additional Lis1 mutants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhao, Y., Chai, P. et al. Nde1 promotes Lis1 binding to full-length autoinhibited human dynein 1. Nat Chem Biol (2025). https://doi.org/10.1038/s41589-025-01981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-025-01981-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing