Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions with tau’s microtubule-binding repeats modulate amyloid-β aggregation and toxicity

Abstract

The complicated pathogenesis of Alzheimer’s disease (AD) is characterized by the accumulation of neurofibrillary tangles and senile plaques, primarily composed of tau and amyloid-β (Aβ) aggregates, respectively. While substantial efforts have focused on unraveling the individual roles of tau and Aβ in AD development, the intricate interplay between these components remains elusive. Here we report how the microtubule-binding repeats of tau engage with Aβ in a distinct manner. Crucially, this interaction notably modifies Aβ aggregation behavior, thereby altering Aβ-associated toxicity within both extracellular and intracellular milieus. Our mechanistic investigations at the molecular level manifest specific fragments within tau’s microtubule-binding domain that possess a balance of hydrophobic and hydrophilic properties, promoting the formation of hetero-adducts with Aβ peptides. These findings offer avenues for understanding and treating AD by emphasizing the tau–Aβ interplay in the pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tau fragments and Aβ studied in this work.
Fig. 2: Effects of tau fragments on the aggregation kinetics of Aβ.
Fig. 3: Analysis of peptide or protein aggregates produced by incubation of Aβ with tau fragments and their influence on the cytotoxicity induced by Aβ.
Fig. 4: Analysis of Aβ with tau fragments.
Fig. 5: Interactions of Aβ with tau fragments.
Fig. 6: Interaction between K18 and Aβ.

Similar content being viewed by others

Data availability

All experimental details and data supporting the main findings of this study are available within the article, Extended Data Figs. 14, Supplementary Data 1–4 and Supplementary Information. Alternatively, data are also available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Suh, J.-M. et al. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord. Chem. Rev. 478, 214978 (2023).

    Article  CAS  Google Scholar 

  2. Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).

    Article  PubMed  Google Scholar 

  3. Busche, M. A. & Hyman, B. T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 23, 1183–1193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nam, G., Lin, Y., Lim, M. H. & Lee, Y.-H. Key physicochemical and biological factors of the phase behavior of tau. Chem 6, 2924–2963 (2020).

    Article  CAS  Google Scholar 

  5. Ballatore, C., Lee, V. M.-Y. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falcon, B. et al. Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol. 136, 699–708 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Falcon, B. et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633–644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Falcon, B. et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561, 137–140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, W. et al. Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. eLife 8, e43584 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yi, Y., Lee, J. & Lim, M. H. Amyloid-β-interacting proteins in peripheral fluids of Alzheimer’s disease. Trends Chem. 6, 128–143 (2024).

    Article  CAS  Google Scholar 

  14. Ghosh, U., Thurber, K. R., Yau, W.-M. & Tycko, R. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc. Natl Acad. Sci. USA 118, e2023089118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kollmer, M. et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 10, 4760 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu, J.-X. et al. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154, 1257–1268 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Paravastu, A. K., Leapman, R. D., Yau, W.-M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).

  18. Oddo, S. et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-β in Alzheimer's disease. Nat. Rev. Neurosci. 8, 499–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, S. J. C., Nam, E., Lee, H. J., Savelieff, M. G. & Lim, M. H. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev. 46, 310–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Brunello, C. A., Merezhko, M., Uronen, R.-L. & Huttunen, H. J. Mechanisms of secretion and spreading of pathological tau protein. Cell. Mol. Life Sci. 77, 1721–1744 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Sebastián-Serrano, Á., de Diego-García, L. & Díaz-Hernández, M. The neurotoxic role of extracellular tau protein. Int. J. Mol. Sci. 19, 998 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Luo, J., Warmländer, S. K. T. S., Gräslund, A. & Abrahams, J. P. Cross-interactions between the Alzheimer disease amyloid-β peptide and other amyloid proteins: a further aspect of the amyloid cascade hypothesis. J. Biol. Chem. 291, 16485–16493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takahashi, R. H., Capetillo-Zarate, E., Lin, M. T., Milner, T. A. & Gouras, G. K. Co-occurrence of Alzheimer’s disease β-amyloid and tau pathologies at synapses. Neurobiol. Aging 31, 1145–1152 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Fein, J. A. et al. Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am. J. Pathol. 172, 1683–1692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Do, T. D. et al. Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity. J. Phys. Chem. B 118, 11220–11230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller, Y., Ma, B. & Nussinov, R. Synergistic interactions between repeats in tau protein and Aβ amyloids may be responsible for accelerated aggregation via polymorphic states. Biochemistry 50, 5172–5181 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Qi, R., Luo, Y., Wei, G., Nussinov, R. & Ma, B. Aβ ‘stretching-and-packing’ cross-seeding mechanism can trigger tau protein aggregation. J. Phys. Chem. Lett. 6, 3276–3282 (2015).

    Article  CAS  Google Scholar 

  29. Vasconcelos, B. et al. Heterotypic seeding of tau fibrillization by pre-aggregated abeta provides potent seeds for prion-like seeding and propagation of tau-pathology in vivo. Acta Neuropathol. 131, 549–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohamed, T., Gujral, S. S. & Rao, P. P. N. Tau derived hexapeptide AcPHF6 promotes beta-amyloid (Aβ) fibrillogenesis. ACS Chem. Neurosci. 9, 773–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Guo, J.-P., Arai, T., Miklossy, J. & McGeer, P. L. Aβ and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 103, 1953–1958 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wallin, C. et al. The neuronal tau protein blocks in vitro fibrillation of the amyloid-β (Aβ) peptide at the oligomeric stage. J. Am. Chem. Soc. 140, 8138–8146 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Quinn, J. P., Corbett, N. J., Kellett, K. A. B. & Hooper, N. M. Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J. Alzheimers Dis. 63, 13–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsumoto, S.-E. et al. The twenty-four KDa C-terminal tau fragment increases with aging in tauopathy mice: implications of prion-like properties. Hum. Mol. Genet. 24, 6403–6416 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Oliveberg, M. Waltz, an exciting new move in amyloid prediction. Nat. Methods 7, 187–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sánchez de Groot, N., Pallarés, I., Avilés, F. X., Vendrell, J. & Ventura, S. Prediction of ‘hot spots’ of aggregation in disease-linked polypeptides. BMC Struct. Biol. 5, 18 (2005).

    Article  PubMed  Google Scholar 

  39. Conchillo-Solé, O. et al. AGGRESCAN: a server for the prediction and evaluation of ‘hot spots’ of aggregation in polypeptides. BMC Bioinformatics 8, 65 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li, W. & Lee, V. M.-Y. Characterization of two VQIXXK motifs for tau fibrillization in vitro. Biochemistry 45, 15692–15701 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. LeVine, H. III. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin, Y. et al. Diverse structural conversion and aggregation pathways of Alzheimer’s amyloid-β (1-40). ACS Nano 13, 8766–8783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, Y. et al. Dual effects of presynaptic membrane mimetics on α-synuclein amyloid aggregation. Front. Cell Dev. Biol. 10, 707417 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lin, Y., Lee, Y.-H., Yoshimura, Y., Yagi, H. & Goto, Y. Solubility and supersaturation-dependent protein misfolding revealed by ultrasonication. Langmuir 30, 1845–1854 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Mahmoudi, M., Kalhor, H. R., Laurent, S. & Lynch, I. Protein fibrillation and nanoparticle interactions: opportunities and challenges. Nanoscale 5, 2570–2588 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl Acad. Sci. USA 111, 9384–9389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Batzli, K. M. & Love, B. J. Agitation of amyloid proteins to speed aggregation measured by ThT fluorescence: a call for standardization. Mater. Sci. Eng C. 48, 359–364 (2015).

    Article  CAS  Google Scholar 

  48. Cox, S. J. et al. Small molecule induced toxic human-IAPP species characterized by NMR. Chem. Commun. 56, 13129–13132 (2020).

    Article  CAS  Google Scholar 

  49. Kinoshita, M. et al. Energy landscape of polymorphic amyloid generation of β2-microglobulin revealed by calorimetry. Chem. Commun. 54, 7995–7998 (2018).

    Article  CAS  Google Scholar 

  50. Griner, S. L. et al. Structure-based inhibitors of amyloid beta core suggest a common interface with tau. eLife 8, e46924 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim, M. et al. Minimalistic principles for designing small molecules with multiple reactivities against pathological factors in dementia. J. Am. Chem. Soc. 142, 8183–8193 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Li, T. et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model. Nat. Commun. 7, 12082 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Linse, S. Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr. Opin. Struct. Biol. 70, 87–98 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, D. et al. Identification of disulfide cross-linked tau dimer responsible for tau propagation. Sci. Rep. 5, 15231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Furukawa, Y., Kaneko, K. & Nukina, N. Tau protein assembles into isoform- and disulfide-dependent polymorphic fibrils with distinct structural properties. J. Biol. Chem. 286, 27236–27246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stevens, R., Stevens, L. & Price, N. C. The stabilities of various thiol compounds used in protein purifications. Biochem. Educ. 11, 70 (1983).

    Article  CAS  Google Scholar 

  57. Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bellamy-Carter, J. et al. Discovering protein–protein interaction stabilisers by native mass spectrometry. Chem. Sci. 12, 10724–10731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Savelieff, M. G. et al. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev. 119, 1221–1322 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Korshavn, K. J., Bhunia, A., Lim, M. H. & Ramamoorthy, A. Amyloid-β adopts a conserved, partially folded structure upon binding to zwitterionic lipid bilayers prior to amyloid formation. Chem. Commun. 52, 882–885 (2016).

    Article  CAS  Google Scholar 

  61. Lin, Y. et al. An amphiphilic material arginine-arginine-bile acid promotes α-synuclein amyloid formation. Nanoscale 15, 9315–9328 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Marinelli, P., Pallares, I., Navarro, S. & Ventura, S. Dissecting the contribution of Staphylococcus aureus α-phenol-soluble modulins to biofilm amyloid structure. Sci. Rep. 6, 34552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fitzpatrick, A. W., Knowles, T. P. J., Waudby, C. A., Vendruscolo, M. & Dobson, C. M. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Comput. Biol. 7, e1002169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meijer, J. T., Henckens, M. J. A. G., Minten, I. J., Löwik, D. W. P. M. & van Hest, J. C. M. Disassembling peptide-based fibres by switching the hydrophobic-hydrophilic balance. Soft Matter 3, 1135–1137 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Broome, B. M. & Hecht, M. H. Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J. Mol. Biol. 296, 961–968 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Haque, M. M. et al. Inhibition of tau aggregation by a rosamine derivative that blocks tau intermolecular disulfide cross-linking. Amyloid 21, 185–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Anthis, N. J. & Clore, G. M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 22, 851–858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mruk, D. D. & Cheng, C. Y. Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis 1, 121–122 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nagai, Y. et al. A toxic monomeric conformer of the polyglutamine protein. Nat. Struct. Mol. Biol. 14, 332–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Goddard, T. & Kneller, D. G. Sparky 3 (Univ. California, San Francisco, 2020); www.cgl.ucsf.edu/home/sparky/

  72. Hyung, S.-J. et al. Insights into antiamyloidogenic properties of the green tea extract (–)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc. Natl Acad. Sci. USA 110, 3743–3748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grants funded by the Korean government (NRF grant nos. RS-2022-NR070709 to M.H.L., RS-2022-NR069719 and RS-2021-NR057690 to Y.-H.L. and 2022R1C1C1007146 to S.L.); the KBSI funds (grant nos. A439200, A423310, A412580, C512120, C523200 and C539200 to Y.-H.L.); the Korea Institute of Science and Technology Institutional Program (grant no. 2E33681 to Y.K.K.). M.K. thanks the Sejong Science Fellowship grant (no. RS-2023-00214034). We thank G. Nam for helping the initial research design, and K.-S. Ryu and D. Seo (KBSI) for providing 15N-labeled K18.

Author information

Authors and Affiliations

Authors

Contributions

M.K., Y.-H.L. and M.H.L. designed the research. M.K. performed the hydropathicity, WALTZ, TANGO, AGGRESCAN, ThT, biochemical assays, TEM and ESI–MS with data analyses. M.K. and E.N. carried out cell studies. Y.L. and Y.-H.L. conducted ITC and 2D NMR experiments with data analyses. S.L., Y.K.K. and D.M.K. prepared K18 and K18 mutants. M.K. and M.H.L. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Young-Ho Lee or Mi Hee Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Alexander Buell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Impact of tau fragments on the aggregation kinetics of Aβ.

a, Analysis of the aggregation kinetics of Aβ40 incubated with different concentrations of R1, R4, PHF6*, and PHF6. The ThT intensity of tau fragments is presented with triangles. b, Values of tlag and t1/2. These values were calculated by fitting the ThT emission with a sigmoidal equation45. Conditions: [tau fragment] = 10, 50, and 100 μM; [Aβ40] = 10 μM; [ThT] = 5 μM; 20 mM HEPES, pH 7.4, 150 mM NaCl; 37 °C; 250 rpm; λex = 440 nm; λem = 490 nm. All values in the ThT-sigmoidal graphs are indicated as mean ± s.e.m. for n = 7 examined over three independent experiments. The error values of tlag and t1/2 represent the fitting error.

Source data

Extended Data Fig. 2 Effects of tau fragments on the aggregation kinetics of Aβ.

a, Analysis of the aggregation kinetics of Aβ40 incubated with different concentrations of K18ΔPHF6*, K18ΔPHF6, and K18ΔPHF6*ΔPHF6. The ThT intensity of tau fragments is presented with triangles. b, Values of tlag and t1/2. These values were calculated by fitting the ThT emission with a sigmoidal equation45. Conditions: [tau fragment] = 10, 50, and 100 μM; [Aβ40] = 10 μM; [DTT] = 0.35, 1.75, and 3.5 mM (35 equiv of each concentration of tau fragments); [ThT] = 5 μM; 20 mM HEPES, pH 7.4, 150 mM NaCl; 37 °C; 250 rpm; λex = 440 nm; λem = 490 nm. All values in the ThT-sigmoidal graphs are indicated as mean ± s.e.m. for n = 7 examined over three independent experiments. The error values of tlag and t1/2 represent the fitting error.

Source data

Extended Data Fig. 3 Cytotoxicity of Aβ incubated with tau fragments.

Cell survival (%) was calculated in comparison to that with an equivalent amount of the buffered solution. Conditions: [Aβ40] = 10 μM; [tau fragment] = 10, 50, and 100 μM; 20 mM HEPES, pH 7.4, 150 mM NaCl; 37 °C. All values are indicated as mean ± s.e.m. for n = 6 examined over three independent experiments. The P values for Aβ40 with PHF6* or PHF6 are summarized: for PHF6* (10 equiv, P = 0.0038); for PHF6 (10 equiv, P = 0.0363). The P values for tau fragments with Aβ40 are obtained: for R1 (1 equiv, P = 2.9 × 10−11; 5 equiv, P = 4.7 × 10−14; 10 equiv, P = 1.2 × 10−11); for R4 (1 equiv, P = 4.1 × 10−12; 5 equiv, P = 3.8 × 10−9; 10 equiv, P = 9.3 × 10−10); for PHF6* (1 equiv, P = 2.2 × 10−13; 5 equiv, P = 2.4 × 10−11; 10 equiv, P = 7.4 × 10−10); for PHF6 (1 equiv, P = 5.1 × 10−10; 5 equiv, P = 1.0 × 10−10; 10 equiv, P = 1.7 × 10−11). *P < 0.05, **P < 0.01, or ****P < 0.0001 by a two-sided unpaired Student’s t-test.

Source data

Extended Data Fig. 4 Detection of the aggregates composed of Aβ and tau fragments by ESI–MS.

a, Deconvoluted MS spectra of Aβ40 with R4 or PHF6*. The peaks obtained by the mass-to-charge ratio of Aβ40 with R4 or PHF6* are presented in Supplementary Fig. 18. Hetero-assemblies of Aβ40 with R4 or PHF6* with the different Aβ40-to-tau fragment stoichiometry are displayed with diamonds. b, Relative abundance of Aβ40 species unbound and bound with R4 or PHF6* calculated by integrating the characterized peaks from the deconvoluted mass by UniDec57. Conditions: [Aβ40] = 10 μM; [tau fragment] = 10, 50, and 100 μM; 20 mM ammonium acetate, pH 7.4; 1 h; 37 °C; 250 rpm. All values are indicated as mean ± s.e.m. for n = 3 examined over three independent experiments. *Values of the relative abundance of heterogeneous oligomers of Aβ40 species with PHF6* could not be determined because they were not observed under our experimental conditions.

Source data

Supplementary information

Supplementary Information

Supplementary Scheme 1, Tables 1–4, Figs. 1–19 and uncropped gel–western blot data.

Reporting Summary

Supplementary Data 1

Source data for the ThT assay of Aβ40 aggregation at different concentrations in Supplementary Fig. 5a,b.

Supplementary Data 2

Source data for the ThT assay of Aβ40 aggregation with different concentrations of DTT in Supplementary Fig. 9a.

Supplementary Data 3

Source data for the turbidity and light scattering assays of tau fragments in Supplementary Fig. 15b,c.

Supplementary Data 4

Source data for the relative abundance of Aβ40 species detected by ESI–MS in Supplementary Fig. 16c.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2b.

Source Data Fig. 3

Uncropped blots for Fig. 3b.

Source Data Fig. 3

Statistical source data for Fig. 3e,f.

Source Data Fig. 4

Statistical source data for Fig. 4b.

Source Data Fig. 5

Statistical source data for Fig. 5b.

Source Data Fig. 6

Statistical source data for Fig. 6b.

Source Data Extended Data Fig. 1

Statistical source data for Extended Data Fig. 1a.

Source Data Extended Data Fig. 2

Statistical source data for Extended Data Fig. 2a.

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Statistical source data for Extended Data Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lin, Y., Nam, E. et al. Interactions with tau’s microtubule-binding repeats modulate amyloid-β aggregation and toxicity. Nat Chem Biol (2025). https://doi.org/10.1038/s41589-025-01987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-025-01987-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing