Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences

Abstract

Viral infection outcomes are sex biased, with males generally more susceptible than females. Paradoxically, the numbers of antiviral natural killer (NK) cells are increased in males. We demonstrate that while numbers of NK cells are increased in male mice, they display decreased effector function compared to females in mice and humans. These differences were not solely dependent on gonadal hormones, because they persisted in gonadectomized mice. Kdm6a (which encodes the protein UTX), an epigenetic regulator that escapes X inactivation, was lower in male NK cells, while NK cell-intrinsic UTX deficiency in female mice increased NK cell numbers and reduced effector responses. Furthermore, mice with NK cell-intrinsic UTX deficiency showed increased lethality to mouse cytomegalovirus. Integrative multi-omics analysis revealed a critical role for UTX in regulating chromatin accessibility and gene expression critical for NK cell homeostasis and effector function. Collectively, these data implicate UTX as a critical molecular determinant of sex differences in NK cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sex differences in IFN-γ production and NK cell numbers are independent of gonadal hormones.
Fig. 2: X-linked UTX displays sexually dimorphic gene expression independent of sex hormones.
Fig. 3: UTX suppresses NK cell fitness.
Fig. 4: UTX enhances NK cell effector function and is required for survival against viral infection.
Fig. 5: UTX controls NK cell homeostasis and IFN-γ production independent of demethylase activity.
Fig. 6: Global changes in NK cell chromatin accessibility and transcription mediated by UTX.

Similar content being viewed by others

Data availability

Sequencing datasets are accessible from the Gene Expression Omnibus under accession number GSE185065. Source data are provided with this paper. Further information and requests for resources and reagents should be directed and will be fulfilled by the corresponding authors.

References

  1. Wilkinson, N. M., Chen, H. C., Lechner, M. G. & Su, M. A. Sex differences in immunity. Annu Rev. Immunol. 40, 75–94 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Pardue, M.-L. & Wizemann, T. M. Exploring the biological contributions to human health: does sex matter? The National Academies Press https://doi.org/10.17226/10028 (2001).

  4. Gianella, S. et al. Sex differences in CMV replication and HIV persistence during suppressive ART. Open Forum Infect. Dis. 7, ofaa289 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Takahashi, T. & Iwasaki, A. Sex differences in immune responses. Science 371, 347–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Patin, E. et al. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 19, 302–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, Z. et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl Acad. Sci. USA 118, e2023216118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talebizadeh, Z., Simon, S. D. & Butler, M. G. X chromosome gene expression in human tissues: male and female comparisons. Genomics 88, 675–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Fang, H., Disteche, C. M. & Berletch, J. B. X inactivation and escape: epigenetic and structural features. Front. Cell Dev. Biol. 7, 219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen, X. et al. Sex difference in neural tube defects in p53-null mice is caused by differences in the complement of X not Y genes. Dev. Neurobiol. 68, 265–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Article  PubMed  Google Scholar 

  13. Hammer, Q., Ruckert, T. & Romagnani, C. Natural killer cell specificity for viral infections. Nat. Immunol. 19, 800–808 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Orange, J. S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 132, 515–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bukowski, J. F., Warner, J. F., Dennert, G. & Welsh, R. M. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J. Exp. Med. 161, 40–52 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Welsh, R. M., Brubaker, J. O., Vargas-Cortes, M. & O’Donnell, C. L. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J. Exp. Med. 173, 1053–1063 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Bancroft, G. J., Shellam, G. R. & Chalmer, J. E. Genetic influences on the augmentation of natural killer cells during murine cytomegalovirus infection: correlation with patterns of resistance. J. Immunol. 126, 988–994 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Menees, K. B. et al. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. Immun. Ageing 18, 3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mujal, A. M., Delconte, R. B. & Sun, J. C. Natural killer cells: from innate to adaptive features. Annu. Rev. Immunol. 39, 417–447 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Loh, J., Chu, D. T., O’Guin, A. K., Yokoyama, W. M. & Virgin, H. W. T. Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J. Virol. 79, 661–667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orange, J. S., Wang, B., Terhorst, C. & Biron, C. A. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin-12 administration. J. Exp. Med. 182, 1045–1056 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Nakaya, M., Tachibana, H. & Yamada, K. Effect of estrogens on the interferon-gamma producing cell population of mouse splenocytes. Biosci. Biotechnol. Biochem. 70, 47–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Chiossone, L. et al. Maturation of mouse NK cells is a 4-stage developmental program. Blood 113, 5488–5496 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wainer Katsir, K. & Linial, M. Human genes escaping X-inactivation revealed by single-cell expression data. BMC Genomics 20, 201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang, F., Babak, T., Shendure, J. & Disteche, C. M. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 20, 614–622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berletch, J. B. et al. Escape from X inactivation varies in mouse tissues. PLoS Genet. 11, e1005079 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Arnold, A. P. Four core genotypes and XY* mouse models: update on impact on SABV research. Neurosci. Biobehav. Rev. 119, 1–8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasegawa, H. et al. Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells. Leukemia 23, 2090–2101 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Riggan, L. et al. The transcription factor Fli1 restricts the formation of memory precursor NK cells during viral infection. Nat. Immunol. 23, 556–567 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Min-Oo, G., Bezman, N. A., Madera, S., Sun, J. C. & Lanier, L. L. Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J. Exp. Med. 211, 1289–1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Louis, C. et al. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J. Exp. Med. 217, e20191421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bjorkstrom, N. K., Strunz, B. & Ljunggren, H. G. Natural killer cells in antiviral immunity. Nat. Rev. Immunol. 22, 112–123 (2022).

    Article  PubMed  Google Scholar 

  34. Smyth, M. J. et al. Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 162, 6658–6662 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Van der Meulen, J., Speleman, F. & Van Vlierberghe, P. The H3K27me3 demethylase UTX in normal development and disease. Epigenetics 9, 658–668 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, S. P. et al. A UTX-MLL4-p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription. Mol. Cell 67, 308–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gozdecka, M. et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, C. et al. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc. Natl Acad. Sci. USA 109, 15324–15329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shih, H. Y. et al. Developmental acquisition of regulomes underlies innate lymphoid cell functionality. Cell 165, 1120–1133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller, S. A., Mohn, S. E. & Weinmann, A. S. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40, 594–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kupz, A. et al. Contribution of Thy1+ NK cells to protective IFN-gamma production during Salmonella typhimurium infections. Proc. Natl Acad. Sci. USA 110, 2252–2257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rapp, M. et al. Core-binding factor beta and Runx transcription factors promote adaptive natural killer cell responses. Sci. Immunol. 2, eaan3796 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Simonetta, F., Pradier, A. & Roosnek, E. T-bet and eomesodermin in NK cell development, maturation and function. Front. Immunol. 7, 241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Presnell, J. S., Schnitzler, C. E. & Browne, W. E. KLF/SP transcription factor family evolution: expansion, diversification and innovation in eukaryotes. Genome Biol. Evol. 7, 2289–2309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kramer, B. et al. Early IFN-alpha signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 54, 2650–2669 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. D’Agostino, P. et al. Sex hormones modulate inflammatory mediators produced by macrophages. Ann. N. Y. Acad. Sci. 876, 426–429 (1999).

    Article  PubMed  Google Scholar 

  51. Lu, F. X. et al. The strength of B cell immunity in female rhesus macaques is controlled by CD8+ T cells under the influence of ovarian steroid hormones. Clin. Exp. Immunol. 128, 10–20 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh, R. P. & Bischoff, D. S. Sex hormones and gender influence the expression of markers of regulatory T cells in SLE patients. Front. Immunol. 12, 619268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cook, K. D. et al. T follicular helper cell-dependent clearance of a persistent virus infection requires T cell expression of the histone demethylase UTX. Immunity 43, 703–714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beyaz, S. et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat. Immunol. 18, 184–195 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell, J. E. et al. UTX promotes CD8+ T cell-mediated antiviral defenses but reduces T cell durability. Cell Rep. 35, 108966 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715 (2018).

    CAS  Google Scholar 

  57. Bosselut, R. Pleiotropic functions of H3K27Me3 demethylases in immune cell differentiation. Trends Immunol. 37, 102–113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Hong, S. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA 104, 18439–18444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Laarhoven, P. M. et al. Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum. Mol. Genet. 24, 4443–4453 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rezvani, K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transpl. 54, 785–788 (2019).

    Article  CAS  Google Scholar 

  62. Eckelhart, E. et al. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 117, 1565–1573 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Lau, C. M. et al. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19, 963–972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith, L. M., McWhorter, A. R., Masters, L. L., Shellam, G. R. & Redwood, A. J. Laboratory strains of murine cytomegalovirus are genetically similar to but phenotypically distinct from wild strains of virus. J. Virol. 82, 6689–6696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dembele, D. & Kastner, P. Fuzzy C-means method for clustering microarray data. Bioinformatics 19, 973–980 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the T.E.O. and M.A.S. laboratories for helpful discussion. We thank the UCLA Technology Center for Genomics and Bioinformatics for RNA-seq library preparation and the Cedars Sinai Applied Genomics, Computation, and Translational Core Facility for ATAC-seq library preparation. T.E.O. is supported by the National Institutes of Health (NIH; AI145997) and UC CRCC (CRN-20-637105). We thank the blood donors and UCLA/CFAR Virology Core Laboratory for providing human PBMCs for study, funded by UCLA CFAR grant 5P30 AI028697. We thank M. Lechner for use of a BioRender license to produce the schematic in Fig. 6. M.A.S. is supported by the NIH (NS107851, AI143894, DK119445), Department of Defense (USAMRAA PR200530) and National Organization of Rare Diseases. M.I.C. is supported by Ruth L. Kirschstein National Research Service Awards (GM007185 and AI007323), and a Whitcome Fellowship from the Molecular Biology Institute at UCLA. L.R. is supported by the Warsaw fellowship from the MIMG department at UCLA. J.H.L. is supported by the NIH NIAMS (T32AR071307) and the UCLA Medical Scientist Training Program (NIH NIGMS T32GM008042). A.P.A. is supported by the NIH (HD100298).

Author information

Authors and Affiliations

Authors

Contributions

M.I.C., L.R., J.H.L., R.Y.T., H.H., A.P.A., T.E.O. and M.A.S. designed the study; M.I.C., J.H.L., R.Y.T., L.R. and S.C. performed the experiments; M.I.C., F.M., B.C. and M.P. performed bioinformatics analysis; M.I.C., M.A.S., J.H.L. and T.E.O. wrote the paper.

Corresponding authors

Correspondence to Timothy E. O’Sullivan or Maureen A. Su.

Ethics declarations

Competing interests

T.E.O. is a scientific advisor for Modulus Therapeutics and Xyphos companies that have financial interest in human NK cell-based therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Mihalis Verykokakis, Edith Heard, and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editor: L. A. Dempsey, in collaboration with the rest of the Nature Immunology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sex differences in IFN-γ production in response to IL-12/18.

a) Representative dot plots showing gating strategy to identify CD3 TCRβ- NK1.1+ mouse NK cells. b) Representative contour plots, (c) percentage IFN-γ+, and (d) normalized IFN-γ MFI of female and male WT NK cells with cultured no treatment (NT) or IL-12 (20 ng/mL) and IL-18 (10 ng/mL) for 4 hours (n = 14 per group). e) Representative contour plots of CD3CD56+ female (n = 6) and male (n = 7) human NK cells cultured and stimulated with 10 ng/mL of IL-12 for 16 hours in the presence of K562 cells. f) Representative dot plots of splenic NK cells (CD3TCRβ- NK1.1+) in gonadectomized female and male mice. g) Representative contour plots of total splenic NK cells isolated from gonadectomized female and male mice and cultured with no treatment (NT) or IL-15 (50 ng/mL) and IL-12 (20 ng/mL) for 4 hours. h) Representative contour plots and i) percentage CD27CD11b (DN), CD27+CD11b (CD27 SP), CD27+CD11b+ (DP), and CD27CD11b+ (CD11b SP) of total splenic NK cells from female and male mice (n = 7 per group). j) Representative contour plots and k) percentage CD27CD11b (DN), CD27+CD11b (CD27 SP), CD27+CD11b+ (DP), and CD27CD11b+ (CD11b SP) of total splenic NK cells from gonadectomized mice (n = 6 per group). Data are representative of 2-3 independent experiments. Samples were compared using unpaired two-tailed Student’s t test and data points are presented as individual mice with the mean ± SEM (N.S., Not Significant; **, p < 0.01; ****, p < 0.0001). Specific p-values are as follows: c:[NT = 0.987; IL-12+IL-18 = 0.00125]; d:[NT = 0.4144; IL-12+IL-18 < 0.0001]; i:[DN > 0.999; CD27 SP = 0.9514; DP = 0.8995; CD11b SP = 0.6517]; k:[DN = 0.0951; CD27 SP = 0.225; DP = 0.161; CD11b SP = 0.789].

Source data

Extended Data Fig. 2 UTX expression in Four Core Genotypes mice and maturation in UTX mouse models.

a) Relative expression of Kdm6a (encodes the protein UTX) by RT-qPCR in Four Core Genotypes mice, in which male or female gonads present are independent of XX or XY chromosome composition, normalized to female WT expression (XX with ovaries) (XX ovaries: n = 4; XY ovaries: n = 5; XX testes: n = 3; XY testes: n = 5). b) Relative UTX MFI in splenic NK cells isolated from female WT (n = 19), male WT (n = 19), female UTXHet (n = 7), and female UTXNKD (n = 4) mice. c) CD11b and CD27 expression within NK cells isolated from female WT (n = 13), male WT (n = 7), and female UTXHet (n = 8) mice. d) Representative western blot showing protein expression of UTX in NK cells isolated from female WT and UTXNKD mice compared to β-actin loading control. Data are representative of 2-3 independent experiments. Samples were compared using a) unpaired two-tailed Student’s t test, b,c) one-way ANOVA with Tukey’s correction for multiple comparisons. Data points are presented as individual mice with the mean ± SEM (N.S., Not Significant; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). Specific p-values are as follows: a:[Ovaries – XX vs. XY < 0.0001; Testes – XX vs. XY = 0.0016]; b:[F WT vs. M WT = 0.003; F UTXNKD vs. F UTXHet and F WT vs. F UTXNKD < 0.0001; M WT vs. F UTXHet = 0.7435; F UTXHet vs. F WT = 0.0004]; c > 0.999.

Source data

Extended Data Fig. 3 UTX regulates NK cell fitness.

a) Representative flow cytometry plots of splenic NK cells from female WT, male WT, and female UTXHet, and female UTXNKD mice. b) Representative contour plots and c) percent of WT(CD45.1+) or UTXNKD(CD45.2+) cells of total splenic T (left) and NK (right) cells in 1:1 WT:UTXNKD mBMC mice (n = 3). d) Percentage of Ki67+ cells in blood of 4:1 WT:UTXNKD mBMCs (n = 28), injection ratio used to normalize WT and UTXNKD NK cell numbers. e) Representative histogram (left) and quantification (right) of CFSE expansion, division and proliferation indices calculated using FlowJo’s Proliferation tool of CFSE-labeled splenic NK cells isolated from WT and UTXNKD mice stimulated ex vivo with IL-15 (50 ng/mL) for 4 days (n = 4). f) Schematic showing adoptive transfer of CTV-labeled congenically distinct WT (CD451x2) and UTXNKD (CD45.2+) NK cells transferred into WT (CD45.1+) recipients at a 1:1 ratio with analysis of CTV dilution and WT:UTXNKD ratio on D7 by flow cytometry. g) Representative histograms showing CTV dilution of congenically distinct WT (CD451x2) and UTXNKD (CD45.2+) NK cells transferred into WT (CD45.1+) recipients before transfer (left) and on day 7 post-transfer (right). h) Representative histograms and i) percentage of cleaved caspase 3+ splenic NK cells from female WT and male WT treated ex vivo with IL-15 (5 ng/mL) and DMSO (Female WT: n = 7; Male WT: n = 8) or 2.5 uM Nutlin-3a (Female WT: n = 3; Male WT: n = 4) for 24 hours. j) Representative histograms and k) percentage of cleaved caspase 3+ splenic NK cells from gonadectomized female and male mice (n = 6) treated ex vivo with IL-15 (5 ng/mL) and DMSO or 2.5uM Nutlin-3a for 24 h. l) Representative histograms of Bcl-2 (left) and Bim (right) of flow cytometry in splenic NK cells from female WT and UTXNKD mice (n = 5). “Ctrl”:unstained flow cytometry controls. Data are representative of 2-3 independent experiments. Samples were compared using unpaired two-tailed Student’s t test with Welch’s correction and data points are presented as individual mice with the mean ± SEM (N.S., Not Significant; *, p < 0.05; **, p < 0.01; ****, p < 0.0001). Specific p-values are as follows: c:[T cells=0.705; NK Cells=0.0202]; d < 0.0001; e:[Expansion=0.0192; Division=0.0253; Proliferation=0.0032]; i:[DMSO = 0.0096; Nutlin-3a = 0.0473]; k:[DMSO = 0.001; Nutlin-3a = 0.0013].

Source data

Extended Data Fig. 4 UTX enhances effector function independent of gonadal hormone and maturation.

a) Representative contour plots of total NK cells from female WT, male WT, female UTXHet, and female UTXNKD mice cultured with IL-15 (50 ng/mL) and IL-12 (20 ng/mL) for 4 h. b) Absolute number of IFN-γ+ NK cells from female WT, male WT, and female UTXHet mice stimulated with no treatment (NT) or IL-15 (50 ng/mL) and IL-12 (20 ng/mL) for 4 h (n = 8). c) Specific lysis of MHC Class I deficient MC38 (Target) cells by female WT (n = 4), male WT (n = 5), and gonadectomized female (n = 3) and male (n = 6) NK cells for 16 h at 4:1 effector:target ratio, normalized to lysis by female WT. d) Representative histograms and e) MFI of CD107a (n = 5 per group), granzyme b (GzmB) (Female:n = 5; Male:n = 4), and perforin (n = 5) of female WT and male WT NK cells incubated with IL-15 (50 ng/mL) only or additionally stimulated with plate-bound anti-NK1.1 antibody (PK136). “Ctrl” refers to matched unstained control for flow cytometry. Representative f) contour plots of IFN-γ and g) histogram of GzmB expressing total splenic NK cells on D1.5 post MCMV infection of 4:1 WT:UTXNKD mixed bone marrow chimeras (mBMCs), ratio used to normalize cell numbers between genotypes. h) IFN-γ protein production in UTXNKD compared to WT NK cells within maturation subsets: CD27CD11b (DN), CD27+CD11b (CD27 SP), CD27+CD11b+ (DP), and CD27CD11b+ (CD11b SP) isolated from 4:1 WT:UTXNKD mBMC 1.5 days post-MCMV infection (n = 6). i) Representative contour plots of total NK cells derived from 1:1 WT:iUTX-/- mBMC mice on day 1.5 post MCMV infection, normalized to WT (n = 6). Data are representative of 2-3 independent experiments. Samples were compared using paired two-tailed Student’s t test and data points are presented as individual mice with the mean ± SEM (N.S., Not Significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). Specific p-values are as follows: b:[F WT vs. M WT = 0.0162; M WT vs. UTXHet = 0.968; F WT vs. F UTXHet = 0.0288]; c:[F WT vs. F Gonadectomy=0.245; F WT vs. M WT = 0.0086; M WT vs. M Gonadectomy=0.998; F Gonadectomy vs. M Gonadectomy=0.0247]; e:[CD107a – NT = 0.54 and NK1.1 = 0.772; GzmB – NT = 0.0004 and NK1.1 = 0.00129; Perforin – NT = 0.0101 and NK1.1 < .0001]; h:[DN = 0.03281; CD27 SP = 0.0186; DP = 0.0231; CD11b SP = 0.0114].

Source data

Extended Data Fig. 5 UTY is expressed but not sufficient to compensate for loss of UTX in NK cell homeostasis and effector function.

a) Expression in transcripts per million of KDM6A (encodes the protein UTX) and KDM6C (encodes the protein UTY) using DICE database RNA-seq data on sorted NK cells from human females (n = 36) vs. males (n = 54). b) Relative expression of Kdm6a (encodes the protein UTX) and Kdm6c (encodes the protein UTY) by RT-qPCR in splenic NK cells isolated from female WT, male WT, and gonadectomized female and male mice (n = 6 per group). c) Representative flow cytometry dot plots and quantification of d) frequency and absolute numbers of NK cells in spleen of male WT and UTXNKD mice (n = 8 per group). e) Representative flow cytometry contour plots and quantification of f) percentage IFN-γ + and normalized IFN-γ MFI of total NK cells from male WT vs. male UTXNKD mice with no treatment (NT) or in response to IL-15 (50 ng/mL) and IL-12 (20 ng/mL) stimulation for 4 hours ex vivo, MFI normalized to male WT (n = 8 per group). g) Representative flow cytometry contour plots and quantification of h) percentage IFN-γ+ and normalized IFN-γ MFI of total NK cells from male WT vs. male UTXNKD mice with no treatment (NT) or in response to IL-12 (20 ng/mL) and IL-18 (10 ng/mL) stimulation for 4 hours ex vivo, MFI normalized to male WT (n = 8 per group). Data are representative of 2-3 independent experiments. Samples were compared using paired two-tailed Student’s t test and data points are presented as individual mice with the mean ± SEM (N.S., Not Significant; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). Specific p-values are as follows: a < 0.0001; b:[UTX - Female vs. Male=0.0008; rest<0.0001]; d:[%NK = 0.0003; No. NK = 0.002]; f:[%IFN-γ+- NT = 0.112; 15 + 12 = 0.00133; IFN-γMFI – NT = 0.145; 15 + 12 < 0.0001]; h[%IFN-γ+- NT = 0.112; 12 + 18 = 0.00135; IFN-γMFI – NT = 0.155; 12 + 18 < 0.0001].

Source data

Extended Data Fig. 6 Integrative ATAC, RNA, anti-UTX CUT&Tag sequencing analysis reveal concomitant changes in chromatin accessibility and transcription mediated by UTX.

a) Schematic of mBMC generated by 1:4 WT (CD45.1+) and UTXNKD (CD45.2+) bone marrow into a lymphodepleted host (CD451x2). After 6wks of reconstitution, splenic NK cells were sorted for ATAC-seq and RNA-seq library preparation. b) Principal component analysis (PCA) of (left) ATAC-seq and (right) RNA-seq changes in WT and UTXNKD NK cells. c) Volcano plot of differentially expressed genes by RNA-seq plotted by Log2FC of UTXNKD vs. WT (x-axis) and Log2 Mean Expression (y-axis). Dotted lines represent Log2FC cut offs (0.5 and 1). Red dots are genes in NK cell effector and developmental pathways. d) Scatter plot highlighting differentially accessible and expressed genes (FDR and p-value<0.05) colored by fuzzy c-means cluster (see Fig. 6). Mean log2FC of ATAC accessibility peaks (y-axis) and log2FC (x-axis) of RNA-seq transcript levels. Best fit regression line (red) with standard error (light red ribbon) (SEM). Positive correlation calculated by two-tailed Spearman correlation of dataset (R = 0.62, p < 2.2×1016). e) Heatmap displaying expression of cell death genes between WT and UTXNKD NK cells FDR < 0.05, adjusted p-value<0.05, and log2FC > 0.5. f) PCA analysis of anti-UTX CUT&Tag in sort-purified WT and UTXNKD NK cells (n = 3). g) Pathway analysis on UTX-bound genes that are decreased (red) or increased (blue) by expression by RNA-seq using Enrichr (p-value by Fisher’s exact test). h) Log2FC in UTXNKDvs.WT of ATAC accessibility (y-axis) plotted by either decreased (>-0.5Log2FC) (blue) or increased (>+0.5Log2FC) (purple) expression by RNA-seq (x-axis) of the UTX bound genes with significant accessibility and expression differences. i) Correlation plot of Log2FC of UTXNKDvs.WT RNA-seq values compared to corresponding ATAC-seq values for each UTX-bound gene. Linear regression was performed (black line) with the standard error 95% confidence intervals plotted (dotted red lines). Two-tailed Pearson’s correlation was performed (r = 0.5165; p-value<0.0001). j) HOMER motif analysis of ATAC-seq peaks grouped by transcription factor family (top) and transcription factor (bottom). Point size indicates percentage of target sequences featuring motif and red gradient indicates -log10(p-value) of enrichment. k) HOMER Motif analysis performed on UTX-bound peaks. % Target Sequences refers to percent of target motifs identified by the HOMER algorithm out of the background motifs. j,k) Cumulative binomial distribution statistical analysis was performed.

Source data

Supplementary information

Supplementary Information

Supplementary Data Table 1

Reporting Summary

Peer review file

Supplementary Data Tables

Supplementary Data Table 2: Table of the differentially accessible peaks between WT and UTX-NKD NK cells. Descriptive statistics are provided. DAG analysis was performed using a two-sided Wilcoxon rank sum test. Supplementary Data Table 3: Table of the differentially expressed genes between WT and UTX-NKD NK cells. Descriptive statistics are provided. DEG analysis was performed using a two-sided Wilcoxon rank sum test. Supplementary Data Table 4: Table of anti-UTX CUT&Tag peaks in WT and UTX-NKD NK cells.

Source data

Source Data Fig. 1

Statistical source data for all graphs in Fig. 1.

Source Data Fig. 2

Statistical source data for all graphs in Fig. 2.

Source Data Fig. 3

Statistical source data for all graphs in Fig. 3.

Source Data Fig. 4

Statistical source data for all graphs in Fig. 4.

Source Data Fig. 5

Statistical source data for all graphs in Fig. 5.

Source Data Fig. 6

Statistical source data for all graphs in Fig. 6.

Source Data Extended Data Fig. 1

Statistical source data for all graphs in Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Statistical source data for all graphs in Extended Data Fig. 2.

Source Data Extended Data Fig. 2

Unprocessed blots for the protein ladder, UTX, and actin from Extended Data Fig. 2d.

Source Data Extended Data Fig. 3

Statistical source data for all graphs in Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Statistical source data for all graphs in Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Statistical source data for all graphs in Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Statistical source data for all graphs in Extended Data Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M.I., Li, J.H., Riggan, L. et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat Immunol 24, 780–791 (2023). https://doi.org/10.1038/s41590-023-01463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-023-01463-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing