Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of motor cortex in motor sequence execution depends on demands for flexibility

Abstract

The role of the motor cortex in executing motor sequences is widely debated, with studies supporting disparate views. Here we probe the degree to which the motor cortex’s engagement depends on task demands, specifically whether its role differs for highly practiced, or ‘automatic’, sequences versus flexible sequences informed by external cues. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues. Lesioning motor cortex showed that it is necessary for flexible cue-driven motor sequences but dispensable for single automatic behaviors trained in isolation. However, when an automatic motor sequence was practiced alongside the flexible task, it became motor cortex dependent, suggesting that an automatic motor sequence fails to consolidate subcortically when the same sequence is produced also in a flexible context. A simple neural network model recapitulated these results and offered a circuit-level explanation. Our results critically delineate the role of the motor cortex in motor sequence execution, describing the conditions under which it is engaged and the functions it fulfills, thus reconciling seemingly conflicting views about motor cortex’s role in motor sequence generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Addressing the role of motor cortex in the execution of automatic and flexible motor sequences.
Fig. 2: Automatic motor sequence execution is robust to motor cortex lesion.
Fig. 3: Flexible motor sequence execution depends on motor cortex.
Fig. 4: Interference across tasks renders automatic motor sequences motor cortex-dependent.
Fig. 5: A neural network model reproduces the experimental results and predicts interference between automatic and flexible task conditions.

Similar content being viewed by others

Data availability

The raw behavioral data and processed kinematic data used in this manuscript can be found online at https://github.com/kmizes/MC-paper. Raw kinematic data are available upon reasonable request. For databases/datasets used in tracking, see https://pose.mpi-inf.mpg.de/#related.

Code availability

The example code used in this manuscript is available online at https://github.com/kmizes/MC-paper. DeeperCut Implementation: https://github.com/eldar/pose-tensorflow.

References

  1. Brecht, M., Schneider, M., Sakmann, B. & Margrie, T. W. Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427, 704–710 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Evarts, E. V. Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31, 14–27 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Ferrier, D. Experiments on the brain of monkeys.—No. I. Proc. R. Soc. Lond. 23, 409–430 (1875).

    Article  Google Scholar 

  4. Neafsey, E. J. et al. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. Rev. 11, 77–96 (1986).

    Article  Google Scholar 

  5. Darling, W. G., Pizzimenti, M. A. & Morecraft, R. J. Functional recovery following motor cortex lesions in non-human primates: experimental implications for human stroke patients. J. Integr. Neurosci. 10, 353–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kawai, R. et al. Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800–812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kolb, B. Functions of the frontal cortex of the rat: a comparative review. Brain Res. 320, 65–98 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Lemke, S. M., Ramanathan, D. S., Guo, L., Won, S. J. & Ganguly, K. Emergent modular neural control drives coordinated motor actions. Nat. Neurosci. 22, 1122–1131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopes, G. et al. A robust role for motor cortex. Front. Neurosci. 17, 971980 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Whishaw, I. Q., Pellis, S. M., Gorny, B. P. & Pellis, V. C. The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav. Brain Res. 42, 77–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Passingham, R. E., Perry, V. H. & Wilkinson, F. The long-term effects of removal of sensorimotor cortex in infant and adult rhesus monkeys. Brain 106, 675–705 (1983).

    Article  PubMed  Google Scholar 

  12. Castro, A. J. The effects of cortical ablations on digital usage in the rat. Brain Res. 37, 173–185 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91, 15–36 (1968).

    Article  CAS  PubMed  Google Scholar 

  14. Drew, T., Jiang, W., Kably, B. & Lavoie, S. Role of the motor cortex in the control of visually triggered gait modifications. Can. J. Physiol. Pharmacol. 74, 426–442 (1996).

    CAS  PubMed  Google Scholar 

  15. Akintunde, A. & Buxton, D. F. Origins and collateralization of corticospinal, corticopontine, corticorubral and corticostriatal tracts: a multiple retrograde fluorescent tracing study. Brain Res. 586, 208–218 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Ebbesen, C. L. et al. More than just a ‘motor’: recent surprises from the frontal cortex. J. Neurosci. 38, 9402–9413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ebbesen, C. L. & Brecht, M. Motor cortex—to act or not to act? Nat. Rev. Neurosci. 18, 694–705 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Heindorf, M., Arber, S. & Keller, G. B. Mouse motor cortex coordinates the behavioral response to unpredicted sensory feedback. Neuron 99, 1040–1054 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Wolff, S. B. E., Ko, R. & Ölveczky, B. P. Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. Sci. Adv. 8, eabk0231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dhawale, A. K., Wolff, S. B. E., Ko, R. & Ölveczky, B. P. The basal ganglia control the detailed kinematics of learned motor skills. Nat. Neurosci. 24, 1256–1269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohbayashi, M. The roles of the cortical motor areas in sequential movements. Front. Behav. Neurosci. 15, 97 (2021).

    Article  Google Scholar 

  23. Lu, X. & Ashe, J. Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45, 967–973 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Berridge, K. C. & Whishaw, I. Q. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp. Brain Res. 90, 275–290 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Grillner, S. & Robertson, B. The basal ganglia downstream control of brainstem motor centres—an evolutionarily conserved strategy. Curr. Opin. Neurobiol. 33, 47–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Hwang, E. J. et al. Disengagement of motor cortex from movement control during long-term learning. Sci. Adv. 5, eaay0001 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lashley, K. S. Studies of cerebral function in learning: V. The retention of motor habits after destruction of the so-called motor areas in primates. Arch. Neurol. Psychiatry 12, 249 (1924).

    Article  Google Scholar 

  28. Glees, P. & Cole, J. Recovery of skilled motor functions after small repeated lesions of motor cortex in macaque. J. Neurophysiol. 13, 137–148 (1950).

    Article  Google Scholar 

  29. Klaus, A., Alves da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Mizes, K. G. C., Lindsey, J., Escola, G. S. & Ölveczky, B. P. Dissociating the contributions of sensorimotor striatum to automatic and visually guided motor sequences. Nat. Neurosci. 26, 1791–1804 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abrahamse, E. L., Ruitenberg, M. F. L., de Kleine, E. & Verwey, W. B. Control of automated behavior: insights from the discrete sequence production task. Front. Hum. Neurosci. 7, 82 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L. & Haith, A. M. Motor learning. Compr. Physiol. 9, 613–663 (2019).

    Article  PubMed  Google Scholar 

  33. Hélie, S. & Cousineau, D. The cognitive neuroscience of automaticity: Behavioral and brain signatures. In Advances in Cognitive and Behavioral Sciences (ed. Sun, M.-K.) 141–159 (Nova Science Publishers, 2014).

  34. Haith, A. M. & Krakauer, J. W. The multiple effects of practice: skill, habit and reduced cognitive load. Curr. Opin. Behav. Sci. 20, 196–201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hikosaka, O. et al. Parallel neural networks for learning sequential procedures. Trends Neurosci. 22, 464–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ruder, L. & Arber, S. Brainstem circuits controlling action diversification. Annu. Rev. Neurosci. 42, 485–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Pimentel-Farfan, A. K., Báez-Cordero, A. S., Peña-Rangel, T. M. & Rueda-Orozco, P. E. Cortico-striatal circuits for bilaterally coordinated movements. Sci. Adv. 8, eabk2241 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Diedrichsen, J. & Kornysheva, K. Motor skill learning between selection and execution. Trends Cogn. Sci. 19, 227–233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lanciego, J. L., Luquin, N. & Obeso, J. A. Functional neuroanatomy of the basal ganglia. Cold Spring Harb. Perspect. Med. 2, a009621 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mandelbaum, G. et al. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron 102, 636–652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McElvain, L. E. et al. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron 109, 1721–1738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 20, 482–494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Joel, D., Niv, Y. & Ruppin, E. Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw. 15, 535–547 (2002).

    Article  PubMed  Google Scholar 

  44. Markowitz, J. E. et al. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature 614, 108–117 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Lindsey, J. & Litwin-Kumar, A. Action-modulated midbrain dopamine activity arises from distributed control policies. Advances in Neural Information Processing Systems 35, 5535–5548 (2022).

  47. Kadmon Harpaz, N., Hardcastle, K. & Ölveczky, B. P. Learning-induced changes in the neural circuits underlying motor sequence execution. Curr. Opin. Neurobiol. 76, 102624 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Pinsard, B. et al. Consolidation alters motor sequence-specific distributed representations. eLife 8, e39324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miyachi, S., Hikosaka, O. & Lu, X. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res. 146, 122–126 (2002).

    Article  PubMed  Google Scholar 

  50. Fee, M. S. The role of efference copy in striatal learning. Curr. Opin. Neurobiol. 25, 194–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Melzer, S. et al. Distinct corticostriatal GABAergic neurons modulate striatal output neurons and motor activity. Cell Rep. 19, 1045–1055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindsey, J., Markowitz, J. E., Datta, S. R. & Litwin-Kumar, A. Dynamics of striatal action selection and reinforcement learning. Preprint at bioRxiv https://doi.org/10.1101/2024.02.14.580408 (2024).

  53. Calabresi, P., Picconi, B., Tozzi, A. & Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barthas, F. & Kwan, A. C. Secondary motor cortex: where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci. 40, 181–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Doyon, J. et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75 (2009).

    Article  PubMed  Google Scholar 

  57. Rueda-Orozco, P. E. & Robbe, D. The striatum multiplexes contextual and kinematic information to constrain motor habits execution. Nat. Neurosci. 18, 453–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sul, J. H., Jo, S., Lee, D. & Jung, M. W. Role of rodent secondary motor cortex in value-based action selection. Nat. Neurosci. 14, 1202–1208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murakami, M., Vicente, M. I., Costa, G. M. & Mainen, Z. F. Neural antecedents of self-initiated actions in secondary motor cortex. Nat. Neurosci. 17, 1574–1582 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Dudman, J. T. & Krakauer, J. W. The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).

    Article  PubMed  Google Scholar 

  63. Brown, L. L., Schneider, J. S. & Lidsky, T. I. Sensory and cognitive functions of the basal ganglia. Curr. Opin. Neurobiol. 7, 157–163 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Liljeholm, M. & O’Doherty, J. P. Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn. Sci. 16, 467–475 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Arlt, C. et al. Cognitive experience alters cortical involvement in goal-directed navigation. eLife 11, e76051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bolkan, S. S. et al. Opponent control of behavior by dorsomedial striatal pathways depends on task demands and internal state. Nat. Neurosci. 25, 345–357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Magill, R. A. & Hall, K. G. A review of the contextual interference effect in motor skill acquisition. Hum. Mov. Sci. 9, 241–289 (1990).

    Article  Google Scholar 

  70. Janice Lin, C.-H. Brain–behavior correlates of optimizing learning through interleaved practice. NeuroImage 56, 1758–1772 (2011).

    Article  Google Scholar 

  71. Wright, D. et al. Consolidating behavioral and neurophysiologic findings to explain the influence of contextual interference during motor sequence learning. Psychon. Bull. Rev. 23, 1–21 (2016).

    Article  PubMed  Google Scholar 

  72. Lindsey, J. & Litwin-Kumar, A. Selective consolidation of learning and memory via recall-gated plasticity. eLife 12, RP90793 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pashler, H. Dual-task interference in simple tasks: data and theory. Psychol. Bull. 116, 220–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, G. R., Cole, M. W. & Rajan, K. How to study the neural mechanisms of multiple tasks. Curr. Opin. Behav. Sci. 29, 134–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Heald, J. B., Lengyel, M. & Wolpert, D. M. Contextual inference underlies the learning of sensorimotor repertoires. Nature 600, 489–493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo, J.-Z. et al. Cortex commands the performance of skilled movement. eLife 4, e10774 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Thorn, C. A., Atallah, H., Howe, M. & Graybiel, A. M. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66, 781–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ashby, F. G., Turner, B. O. & Horvitz, J. C. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn. Sci. 14, 208–215 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-dependent competition between goal-directed and habitual response preparation. Nat. Hum. Behav. 3, 1252–1262 (2019).

    Article  PubMed  Google Scholar 

  80. Wiestler, T. & Diedrichsen, J. Skill learning strengthens cortical representations of motor sequences. eLife 2, e00801 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wymbs, N. F. & Grafton, S. T. The human motor system supports sequence-specific representations over multiple training-dependent timescales. Cereb. Cortex 25, 4213–4225 (2015).

    Article  PubMed  Google Scholar 

  82. Ramkumar, P. et al. Chunking as the result of an efficiency computation trade-off. Nat. Commun. 7, 12176 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wu, T., Kansaku, K. & Hallett, M. How self-initiated memorized movements become automatic: a functional MRI study. J. Neurophysiol. 91, 1690–1698 (2004).

    Article  PubMed  Google Scholar 

  84. Matsuzaka, Y., Picard, N. & Strick, P. L. Skill representation in the primary motor cortex after long-term practice. J. Neurophysiol. 97, 1819–1832 (2007).

    Article  PubMed  Google Scholar 

  85. Masís, J. et al. A micro-CT-based method for quantitative brain lesion characterization and electrode localization. Sci. Rep. 8, 5184 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Leibe, B., Matas, J., Sebe, N. & Welling, M. (eds). Computer Vision—ECCV 2016 34–50 (Springer International Publishing, 2016).

  87. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) 1026–1034 (IEEE, 2015).

Download references

Acknowledgements

We thank K. Hardcastle, N. K. Harpaz, K. Laboy-Juarez, C. Bhatia, D. Aldarondo and P. Zmarz for discussions and comments on the manuscript. We also thank S. Iuleu, M. Shah and G. Pho for technical support. We also thank S. Turney and the Harvard Center for Biological Imaging, as well as G. Lin and the Harvard Center for Nanoscale Systems, for infrastructure and support. This work was supported by the National Institutes of Health (grants R01-NS099323-01 and R01-NS105349 to B.P.Ö.) J.L. was also supported by the DOE CSGF (DE-SC0020347). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.G.C.M. and B.P.Ö. conceived and designed the study. K.G.C.M. conducted the experiments and analyzed the data. J.L. and G.S.E. designed and analyzed the model. K.G.C.M. and B.P.Ö. wrote the manuscript with input from J.L. and G.S.E.

Corresponding authors

Correspondence to Kevin G. C. Mizes, G. Sean Escola or Bence P. Ölveczky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Jesse Goldberg, Pavel Rueda-Orozco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Histology from cohorts of MC lesioned rats.

a,b, Outlines of MC lesion boundaries of rats imaged with micro-CT. White lines denote AP and ML from bregma, and dashed lines are spaced every 1 mm. a, MC lesions of a cohort of rats trained on the combined task (CUE, WM and AUTO). Shown are outlines from n = 5/7 rats; two rats were imaged via Nissl stain. b, MC lesions of a cohort of rats trained only on the automatic sessions (n = 6).

Extended Data Fig. 2 CUE and WM performance following contralateral lesion.

Fraction of successful trials pre- and post-unilateral lesion to the hemisphere contralateral to the lever-pressing forelimb, in the CUE and WM task. Lines denote individual rats (n = 7). **P < 0.01, ***P < 0.001, two-tailed t-test.

Extended Data Fig. 3 Individual lever presses are species-typical and unaffected by the MC lesion.

a, Average forelimb movement trajectories (scaled) for the left (L), center (C) and right (R) lever presses for all animals (n = 7) in the flexible task context. Each line denotes a different rat. Top row is the horizontal (left) and vertical (right) trajectories pre-lesion; bottom row is the trajectories post-lesion. b, Mean (left) and max (right) forelimb speed over single lever presses, before and after the lesion. Lines indicate individual rats (n = 7). P > 0.05, two-sided t-test. c, Correlation of the mean forelimb trajectory (horizontal and vertical) during a single lever-press, across levers (L, C or R) and rats (n = 7), giving us n = 3 × 7 samples. Each dot indicates a correlation between individual samples. Comparisons are made across mean forelimb trajectories pre-lesion (n = 210), post-lesion (n = 210) and between pre-lesion and post-lesion trajectories (n = 441). For all subpanels, *P < 0.05, two-sided paired t-test. n.s. signifies P > 0.05.

Extended Data Fig. 4 Sensory- and working-memory-guided performance kinematics resembles performance early in training.

a,b, Average performance (n = 7) over 1000 trials at the start of training, immediately pre-lesion and for the first training session post-bilateral lesion for (a) trial duration and (b) horizontal movement speed. c, Kinematic traces from one example rat early in learning and before and after the lesion. d, Average trial-to-trial correlation of forelimb trajectories for a single sequence, averaged across all rats (n = 7). One of seven rats had no videos captured during early learning and was excluded from the ‘early’ analysis. *P < 0.05, **P < 0.01, ***P < 0.001, two-sided paired t-test.

Extended Data Fig. 5 Lever presses occur in discrete positions and error mode distributions.

a, Spatial distributions of an example rat’s nose for rewarded/unrewarded sequences, sampled pre- and post-lesion. b, Same as a, but the nose location is sampled only during the lever press. c, The variability of the nose position, quantified by computing the entropy of the spatial distribution across 2000 trials, for rewarded and unrewarded presses (dark/light shades) and pre-lesion/post-lesion (red/blue), averaged across rats (n = 5). Two of the seven ‘full task’ rats did not have videos recorded from the top view and were excluded from this analysis. Shaded area indicates s.e.m. d, Proportion of error trials classified as ‘motor errors’ for both CUE and WM (n = 7), and the AUTO-only tasks (n = 6), across lesion conditions. P > 0.05, two-tailed t-test.

Extended Data Fig. 6 Automatic task performance in combined cohort does not recover after one month of retraining.

a, Performance in the AUTO task from the 1st week of training (early), 7 days before the lesion (pre-lesion), 7 days after the lesion (post-lesion) and 1 month following lesion (late) in the combined task (green, n = 7) and AUTO-only (purple, n = 6) cohorts. Error bars denote s.e.m. b, Average performance, measured as the fraction of successful trials, from time conditions (pre, post and late) across rats (n = 6 for AUTO-only and n = 7 for combined cohorts), represented as individual lines. ce, Kinematic metrics plotted in the week before lesion (pre), the week after lesion (post) and a month following lesion (late). c, Trial time. d, Trial speed. e, Forelimb trajectory correlation. Lines denote individual rats (n = 6 for AUTO-only and n = 7 for combined cohorts). *P < 0.05, **P < 0.01, ***P < 0.001, two-sided paired (within cohort) or unpaired (across cohorts) t-test.

Extended Data Fig. 7 Pre-lesion training metrics do not differ across the combined task and AUTO-only cohorts.

a, Rats across both cohorts (combined task (n = 7)—green; and AUTO-only (n = 6)—purple) perform a similar number of trials per session before the MC lesion. Dots represent individual rat averages, and bars are grand averages. b, Both combined (n = 7) and AUTO-only (n = 6) cohorts reach expert AUTO performance (Methods) in a similar number of training trials. c,d, Both cohorts (n = 7 for combined and n = 6 for AUTO-only) train for a similar number of total trials (c) and sessions (d) on the AUTO sequence before the lesion. P > 0.05 in all subpanels, two-sided unpaired t-test.

Supplementary information

Supplementary Information

Supplementary Note (statistical data for Figs. 2–4 and Extended Data Figs. 2–7).

Reporting Summary

Supplementary Video 1

Effects of MC lesion on a representative rat trained only on the automatic task. Shown are two example trials from before and after the bilateral MC lesion side-by-side.

Supplementary Video 2

Video of the one ‘outlier’ rat that showed a performance deficit on the automatic task after MC lesion.

Supplementary Video 3

Effects of MC lesion on automatic task performance in a rat trained on the combined (flexible and automatic) task.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizes, K.G.C., Lindsey, J., Escola, G.S. et al. The role of motor cortex in motor sequence execution depends on demands for flexibility. Nat Neurosci 27, 2466–2475 (2024). https://doi.org/10.1038/s41593-024-01792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-024-01792-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing