Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Manufacturing synthetic viscoelastic antigen-presenting cells for immunotherapy

Abstract

This protocol details the preparation and functionalization of viscoelastic synthetic antigen-presenting cells (APCs) for T cell activation, designed to enhance immunotherapeutic efficacy. Using a high-throughput microfluidic system and post-processing, we create cell-sized sodium alginate microbeads with tunable stiffness, viscoelasticity and surface chemistry, enabling them to better mimic the physical and activation properties of natural APCs. The protocol includes fabrication of synthetic cells with defined sizes, crosslinking strategies to achieve desirable mechanical properties, surface functionalization via click chemistry for attaching activation molecules, and characterization methods for mechanical and biochemical properties. Compared with traditional matrices or rigid microbeads, this approach allows precise control over the mechanical and biochemical features of synthetic APCs, ensuring optimal T cell activation. The resulting synthetic cells support robust T cell activation and expansion, enhance the CD8/CD4 T cell ratio, promote T memory stem cell (TMSC) formation and improve chimeric antigen receptor transduction efficiency, leading to superior tumor-killing efficacy in vitro and in vivo. Additionally, these synthetic cells can be efficiently removed from T cells after activation using simple centrifugation or calcium chelation, preserving the activated T cells. The complete protocol, including fabrication, functionalization and quality assessment, requires ~1 week to complete. Users should have experience in microfluidics, biomaterial handling, bioconjugation techniques and basic cell culture. This platform can be adapted for broader applications in immune cell engineering.

Key points

  • Protocol describing the fabrication of synthetic viscoelastic antigen-presenting cells and their application in T cell engineering, including crosslinking strategies to achieve desirable mechanical properties, surface functionalization via click chemistry for attaching activation molecules, and characterization methods for mechanical and biochemical properties.

  • These synthetic cells support robust T cell expansion, which contributes to longer in vivo persistence, stronger antitumor immune responses and improved tumor control than those expanded with conventional methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of CAR T cell generation and the role of synthetic viscoelastic APCs (synthetic cells) in enhancing cancer immunotherapy.
Fig. 2: Workflow for the preparation and application of synthetic cells in T cell activation and functional characterization.
Fig. 3: The engineering design of the microfluidic chip used in this protocol and mechanical characterization of synthetic cells.
Fig. 4: Cross-disciplinary workflow for the development, manufacturing and application of synthetic cells.
Fig. 5: Comparison of CAR-T cell expansion and characterization using synthetic cells versus Dynabeads.
Fig. 6: CAR-T cell expansion and tumor-killing efficacy using synthetic cells, elastic beads and Dynabeads.

Data availability

The genomics (scRNA-seq) data were obtained from the public repository Gene Expression Omnibus (GEO) database (accession code GSE242531; related to Fig. 5d–f). Additional information and materials will be made available upon reasonable request. Source data are provided with this paper.

References

  1. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med 25, 947–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faruqi, A. J. et al. The impact of race, ethnicity, and obesity on CAR T-cell therapy outcomes. Blood Adv. 6, 6040–6050 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, Y., Sperling, A. S., Smith, E. L. & Mooney, D. J. Optimizing the manufacturing and antitumour response of CAR T therapy. Nat. Rev. Bioeng. 1, 271–285 (2023).

    Article  CAS  Google Scholar 

  4. Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Vormittag, P., Gunn, R., Ghorashian, S. & Veraitch, F. S. A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol. 53, 164–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Thauland, T. J., Hu, K. H., Bruce, M. A. & Butte, M. J. Cytoskeletal adaptivity regulates T cell receptor signaling. Sci. Signal. 10, eaah3737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shah, K., Al-Haidari, A., Sun, J. & Kazi, J. U. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 6, 412 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seaman, K., Sun, Y. & You, L. Recent advances in cancer-on-a-chip tissue models to dissect the tumour microenvironment. Med-X 1, 11 (2023).

    Article  CAS  Google Scholar 

  9. Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hernandez-Lopez, R. A. et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science 371, 1166–1171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, W. & Zhu, C. Mechanical regulation of T-cell functions. Immunol. Rev. 256, 160–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, K. H. & Butte, M. J. T cell activation requires force generation. J. Cell Biol. 213, 535–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival. Nat. Commun. 12, 4098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong, S. H. D. et al. Mechanical manipulation of cancer cell tumorigenicity via heat shock protein signaling. Sci. Adv. 9, eadg9593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moulton, V. R. & Farber, D. L. Committed to memory: lineage choices for activated T cells. Trends Immunol. 27, 261–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, J. et al. Osr2 functions as a biomechanical checkpoint to aggravate CD8+. T cell exhaustion in tumor. Cell 187, 3409–3426 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Ukrainskaya, V. et al. Antigen-specific stimulation and expansion of CAR-T cells using membrane vesicles as target cell surrogates. Small 17, e2102643 (2021).

    Article  PubMed  Google Scholar 

  19. Zhang, D. K. Y., Cheung, A. S. & Mooney, D. J. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat. Protoc. 15, 773–798 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hickey, J. W. et al. Engineering an artificial T-cell stimulating matrix for immunotherapy. Adv. Mater. 31, e1807359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Majedi, F. S. et al. Cytokine secreting microparticles engineer the fate and the effector functions of T cells. Adv. Mater 30, 1703178 (2018).

    Article  Google Scholar 

  23. Majedi, F. S. et al. T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials 252, 120058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tao, Y., Ju, E., Ren, J. & Qu, X. Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials 35, 9963–9971 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Deng, B. et al. Different T-cell activation approaches impact the resulting CART-cell products and possible clinical outcomes. Blood 144, 4856–4856 (2024).

    Article  Google Scholar 

  26. Eggermont, L. J., Paulis, L. E., Tel, J. & Figdor, C. G. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 32, 456–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Z. et al. Viscoelastic synthetic antigen-presenting cells for augmenting the potency of cancer therapies. Nat. Biomed. Eng. 8, 1615–1633 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Cieri, N. et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121, 573–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin, W. et al. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kummerow, C. et al. The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol. Rev. 231, 132–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Satthaporn, S. et al. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol. Immunother. 53, 510–518 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shinde, P., Fernandes, S., Melinkeri, S., Kale, V. & Limaye, L. Compromised functionality of monocyte-derived dendritic cells in multiple myeloma patients may limit their use in cancer immunotherapy. Sci. Rep. 8, 5705 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wolfl, M. & Greenberg, P. D. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat. Protoc. 9, 950–966 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Deniger, D. C. et al. Activating and propagating polyclonal gamma delta T cells with broad specificity for malignancies. Clin. Cancer Res. 20, 5708–5719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, J., Melenhorst, J. J. & Fraietta, J. A. Toward precision manufacturing of immunogene T-cell therapies. Cytotherapy 20, 623–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Suhoski, M. M. et al. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol. Ther. 15, 981–988 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y. & Kurlander, R. J. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J. Transl. Med. 8, 104 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Al-Aghbar, M. A., Jainarayanan, A. K., Dustin, M. L. & Roffler, S. R. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun. Biol. 5, 40 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan, D. J., Shi, L. & Kam, L. C. Biphasic response of T cell activation to substrate stiffness. Biomaterials 273, 120797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, E. et al. Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for developing T cell-based therapies. Nat. Nanotechnol. 19, 1914–1922 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Mock, U. et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy 18, 1002–1011 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Abou-el-Enein, M. et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discov. 2, 408–422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trickett, A. & Kwan, Y. L. T cell stimulation and expansion using anti-CD3/CD28 beads. J. Immunol. Methods 275, 251–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Delcassian, D., Sattler, S. & Dunlop, I. E. T cell immunoengineering with advanced biomaterials. Integr. Biol. 9, 211–222 (2017).

    Article  CAS  Google Scholar 

  48. Li, A. W. et al. Engineering potent chimeric antigen receptor T cells by programming signaling during T-cell activation. Sci. Rep. 14, 21331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agarwal, P. et al. One-step microfluidic generation of pre-hatching embryo-like core–shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13, 4525–4533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chung, B. G., Lee, K.-H., Khademhosseini, A. & Lee, S.-H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12, 45–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Hsiao, A. Y. et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30, 3020–3027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, K., Ding, H.-J., Liu, J., Chen, Y. & Zhao, X.-Z. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22, 9453–9457 (2006).

    Article  PubMed  Google Scholar 

  53. Liu, Z. et al. Shape-controlled high cell-density microcapsules by electrodeposition. Acta Biomater. 37, 93–100 (2016).

    Article  PubMed  Google Scholar 

  54. Liu, Z. et al. Three-dimensional hepatic lobule-like tissue constructs using cell-microcapsule technology. Acta Biomater. 50, 178–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, Z. et al. Mild formation of core–shell hydrogel microcapsules for cell encapsulation. Biofabrication 13, 025002 (2021).

    Article  CAS  Google Scholar 

  56. Liu, Z. et al. In vitro mimicking the morphology of hepatic lobule tissue based on Ca-alginate cell sheets. Biomed. Mater. 13, 035004 (2018).

    Article  PubMed  Google Scholar 

  57. Wu, Z. et al. Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles. Matter 7, 3645–3657 (2024).

    Article  CAS  Google Scholar 

  58. Ghiasi, Z., Sajadi, T. A. & Tafaghodi, M. Preparation and in vitro characterization of alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Iran. J. Basic Med. Sci. 10, 90–98 (2007).

    CAS  Google Scholar 

  59. Pestovsky, Y. S. & Martínez-Antonio, A. The synthesis of alginate microparticles and nanoparticles. Drug Des. Intellect. Prop. Int. J. 3, 293–327 (2019).

    Google Scholar 

  60. Łętocha, A., Miastkowska, M. & Sikora, E. Preparation and characteristics of alginate microparticles for food, pharmaceutical and cosmetic applications. Polymers 14, 3834 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eliahoo, P. et al. Viscoelasticity in 3D cell culture and regenerative medicine: measurement techniques and biological relevance. ACS Mater. Au 4, 354–384 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shaebani, M. R. et al. Effects of vimentin on the migration, search efficiency, and mechanical resilience of dendritic cells. Biophys. J. 121, 3950–3961 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zohorsky, K. & Mequanint, K. Designing biomaterials to modulate notch signaling in tissue engineering and regenerative medicine. Tissue Eng. 27, 383–410 (2021).

    Article  CAS  Google Scholar 

  65. Kim, M. M. Ligand-Immobilized Biomaterial Surfaces for Notch Signaling and T Cell Differentiation. PhD thesis, University of Texas at Austin (2012).

  66. Frank, V. et al. Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency. Sci. Rep. 6, 24264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dingal, P. D. P. & Discher, D. E. Combining insoluble and soluble factors to steer stem cell fate. Nat. Mater. 13, 532–537 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Fernandes, R. A. et al. A cell topography-based mechanism for ligand discrimination by the T cell receptor. Proc. Natl Acad. Sci. USA 116, 14002–14010 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Voisinne, G. et al. Kinetic proofreading through the multi-step activation of the ZAP70 kinase underlies early T cell ligand discrimination. Nat. Immunol. 23, 1355–1364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feng, Y., Reinherz, E. L. & Lang, M. J. αβ T cell receptor mechanosensing forces out serial engagement. Trends Immunol. 39, 596–609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ma, Z., Janmey, P. A. & Finkel, T. H. The receptor deformation model of TCR triggering. FASEB J. 22, 1002–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Sunshine, J. C., Perica, K., Schneck, J. P. & Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35, 269–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Martinsen, A., Skjak-Braek, G. & Smidsrod, O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33, 79–89 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Fan, Y. et al. Alginate enhances memory properties of antitumor CD8+ T cells by promoting cellular antioxidation. ACS Biomater. Sci. Eng. 5, 4717–4725 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Charbonier, F., Indana, D. & Chaudhuri, O. Tuning viscoelasticity in alginate hydrogels for 3D cell culture studies. Curr. Protoc. 1, e124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Majedi, F. S. et al. Systemic enhancement of antitumour immunity by peritumourally implanted immunomodulatory macroporous scaffolds. Nat. Biomed. Eng. 7, 56–71 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Li, Y.-R. et al. Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nat. Biotechnol. 43, 329–344 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li, Y.-R. et al. Allogeneic CD33-directed CAR-NKT cells for the treatment of bone marrow-resident myeloid malignancies. Nat. Commun. 16, 1248 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Majedi, F. S. et al. Augmentation of T-cell activation by oscillatory forces and engineered antigen-presenting cells. Nano Lett. 19, 6945–6954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015).

    Article  CAS  Google Scholar 

  84. Chen, J. Y. et al. Cell-sized lipid vesicles as artificial antigen-presenting cells for antigen-specific T cell activation. Adv. Healthc. Mater. 12, e2203163 (2023).

    Article  PubMed  Google Scholar 

  85. Omotoso, M. O. et al. Alginate-based artificial antigen presenting cells expand functional CD8(+) T cells with memory characteristics for adoptive cell therapy. Biomaterials 313, 122773 (2025).

    Article  CAS  PubMed  Google Scholar 

  86. Olden, B. R. et al. Cell-templated silica microparticles with supported lipid bilayers as artificial antigen-presenting cells for T cell activation. Adv. Healthc. Mater. 8, e1801188 (2019).

    Article  PubMed  Google Scholar 

  87. Lou, J. et al. Surface-functionalized microgels as artificial antigen-presenting cells to regulate expansion of T cells. Adv. Mater. 36, e2309860 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vasquez, J. M. et al. In situ forming hyperbranched PEG-thiolated hyaluronic acid hydrogels with honey-mimetic antibacterial properties. Front. Bioeng. Biotechnol. 9, 742135 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Huang, X. et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 16, 214–223 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Hammink, R. et al. Semiflexible immunobrushes induce enhanced T cell activation and expansion. ACS Appl. Mater. Interfaces 13, 16007–16018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Philip, R. & Epstein, L. B. Tumour necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, γ-interferon and interleukin-1. Nature 323, 86–89 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Frei, K. et al. Antigen presentation and tumor cytotoxicity by interferon‐γ‐treated microglial cells. Eur. J. Immunol. 17, 1271–1278 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Strzalka, W. & Ziemienowicz, A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann. Bot. 107, 1127–1140 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Bologna-Molina, R., Mosqueda-Taylor, A., Molina-Frechero, N., Mori-Estevez, A. D. & Sánchez-Acuña, G. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumor. Med. Oral. Patol. Oral. Cir. Bucal 18, e174 (2012).

    PubMed Central  Google Scholar 

  95. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhong, M. et al. BET bromodomain inhibition rescues PD-1-mediated T-cell exhaustion in acute myeloid leukemia. Cell Death Dis. 13, 671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mueller, G. & Lipp, M. Shaping up adaptive immunity: the impact of CCR7 and CXCR5 on lymphocyte trafficking. Microcirculation 10, 325–334 (2003).

    Article  CAS  Google Scholar 

  98. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tiberti, S. et al. GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome. Nat. Commun. 13, 6752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gounari, F. & Khazaie, K. TCF-1: a maverick in T cell development and function. Nat. Immunol. 23, 671–678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to the UCLA Division of Laboratory Animal Medicine (DLAM) for assistance with animal studies, the UCLA BSCRC Flow Cytometry Core Facility for cell sorting, and the UCLA TCGB for scRNA-seq services. The UCLA CFAR Virology Core is acknowledged for providing human PBMCs, and the Advanced Light Microscopy/Spectroscopy Laboratory along with the Leica Microsystems Center at the California NanoSystems Institute (CNSI) for support with imaging. Additionally, we thank the NIH Tetramer Facility for providing tetramers utilized in this research. L.Y. is a member of UCLA Parker Institute for Cancer Immunotherapy (PICI). Y.-R.L. is supported by a UCLA Chancellor’s Award for Postdoctoral Research and a UCLA Goodman–Luskin Microbiome Center Collaborative Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Z. Liu, Y.-R.L. and Y. Yang developed and optimized the protocol. Z. Liu, Y.-R.L., Y. Yang, E.Z., H.N., Y. Yan, B.Z., G.C., N.P. and Z.L. performed the protocol validation and optimization experiments. Z. Liu, Y.-R.L., Y. Yang and E.Z. analyzed and compiled the data. Z. Liu, Y.-R.L., Y. Yang, E.Z. and J.L. documented and prepared the protocol steps and procedures. L.Y. and S.L. supervised the protocol development and provided critical insights throughout the study. Z. Liu, Y.-R.L., Y. Yang, L.Y. and S.L. wrote and revised the manuscript, incorporating feedback from all authors.

Corresponding authors

Correspondence to Lili Yang or Song Li.

Ethics declarations

Competing interests

Z. Liu, Y.-R.L, L.Y. and S.L. filed a patent application (PCT/US24/22516) on synthetic cell as inventors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Xiao Huang, Paolo Provenzano, Qinghe Zeng, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Liu, Z. et al. Nat. Biomed. Eng. 8, 1615–1633 (2024): https://doi.org/10.1038/s41551-024-01272-w

Supplementary information

Source data

Source data Figs. 5 and 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, YR., Yang, Y. et al. Manufacturing synthetic viscoelastic antigen-presenting cells for immunotherapy. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01265-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer