Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Airborne biomarker localization engine for open-air point-of-care detection

Abstract

Unlike biomarkers in biofluids, airborne biomarkers are dilute and difficult to trace. Detecting diverse airborne biomarkers with sufficient sensitivity typically relies on bulky and expensive equipment like mass spectrometers that remain inaccessible to the general population. Here we introduce airborne biomarker localization engine (ABLE), a simple, affordable and portable platform that can detect both non-volatile and volatile molecules and particulate biomarkers from open air in about 15 min. ABLE substantially improves the gas detection limits by converting dilute gases into droplets by water condensation, producing concentrated aqueous samples that can be easily tested by existing liquid-sensing platforms. Fundamental studies of multiphase condensation revealed unexpected stability in condensate-trapped biomarkers, making ABLE a reliable, accessible and high-performance system for open-air-based biosensing applications such as non-contact infant healthcare, pathogen detection in public spaces and food safety monitoring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept, design and device components of ABLE.
Fig. 2: Thermofluidic design principles of ABLE.
Fig. 3: Enrichment strategies for detecting dilute biomarkers.
Fig. 4: Open-air detection of disease biomarkers.
Fig. 5: Detection of particle biomarkers.

Similar content being viewed by others

Data availability

The data required to recreate the figures are available in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Wu, J., Liu, H., Chen, W., Ma, B. & Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 1, 346–360 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, W. Y., Cheng, H. Y. & Wang, X. F. Skin-interfaced colorimetric microfluidic devices for on-demand sweat analysis. npj Flex. Electron. 7, 43 (2023).

  3. Ye, Z. L. et al. A breathable, reusable, and zero-power smart face mask for wireless cough and mask-wearing monitoring. ACS Nano 16, 5874–5884 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xiang, Y. & Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 3, 697–703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Puthussery, J. V. et al. Real-time environmental surveillance of SARS-CoV-2 aerosols. Nat. Commun. 14, 3692 (2023).

  7. Horvath, I. et al. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Resp. J. 26, 523–548 (2005).

    Article  CAS  Google Scholar 

  8. Tankasala, D. & Linnes, J. C. Noninvasive glucose detection in exhaled breath condensate. Transl. Res. 213, 1–22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arnold, C. Diagnostics to take your breath away. Nat. Biotechnol. 40, 990–993 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, S. L. et al. Rapid measurement of lactate in the exhaled breath condensate: biosensor optimization and in-human proof of concept. ACS Sens. 7, 3809–3816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Istif, E. et al. Miniaturized wireless sensor enables real-time monitoring of food spoilage. Nat. Food 4, 427–436 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee, S. G., Chatterjee, S., Ray, A. K. & Chakraborty, A. K. Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B 221, 1170–1181 (2015).

    Article  Google Scholar 

  14. Klotz, T., Ibrahim, A., Maddern, G., Caplash, Y. & Wagstaff, M. Devices measuring transepidermal water loss: a systematic review of measurement properties. Skin Res. Technol. 28, 497–539 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mainelis, G. Bioaerosol sampling: classical approaches, advances, and perspectives. Aerosol Sci. Technol. 54, 496–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Hering, S. V. & Stolzenburg, M. R. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci. Technol. 39, 428–436 (2005).

    Article  CAS  Google Scholar 

  17. Hering, S. V., Spielman, S. R. & Lewis, G. S. Moderated, water-based, condensational particle growth in a laminar flow. Aerosol Sci. Technol. 48, 401–408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asadi, S. et al. Influenza A virus is transmissible via aerosolized fomites. Nat. Commun. 11, 4062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, Y. et al. Growth characteristics of submicron particles by water vapor condensation in the multi-section growth tube. Powder Technol. 440, 119797 (2024).

    Article  CAS  Google Scholar 

  20. Zervaki, O., Dionysiou, D. D. & Kulkarni, P. A high-throughput, turbulent-mixing, condensation aerosol concentrator for direct aerosol collection as a liquid suspension. J. Aerosol Sci. 182, 106442 (2024).

    Article  CAS  Google Scholar 

  21. Gupta, R. et al. Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nat. Biomed. Eng. 7, 1556–1570 (2023).

  22. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

  23. Xu, C. H. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kroger, D. G. & Rohsenow, W. M. Condensation heat transfer in the presence of a non-condensable gas. Int. J. Heat Mass Transfer 11, 15–26 (1968).

    Article  CAS  Google Scholar 

  25. Wang, R. S., Guo, J. H., Muckleroy, E. A. & Antao, D. S. Robust silane self-assembled monolayer coatings on plasma-engineered copper surfaces promoting dropwise condensation. Int. J. Heat Mass Transfer 194, 123028 (2022).

  26. Cha, H. Y. et al. Nanoscale-agglomerate-mediated heterogeneous nucleation. Nano Lett. 17, 7544–7551 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Ma, J., Sett, S., Cha, H., Yan, X. & Miljkovic, N. Recent developments, challenges, and pathways to stable dropwise condensation: a perspective. Appl. Phys. Lett. 116, 260501 (2020).

  28. Miljkovic, N., Enright, R. & Wang, E. N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 1776–1785 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

    Article  CAS  Google Scholar 

  30. Pahlavan, A. A., Yang, L. S., Bain, C. D. & Stone, H. A. Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes. Phys. Rev. Lett. 127, 024501 (2021).

  31. Christy, J. R. E., Hamamoto, Y. & Sefiane, K. Flow transition within an evaporating binary mixture sessile drop. Phys. Rev. Lett. 106, 205701 (2011).

  32. Bell, A. K. et al. Concentration gradients in evaporating binary droplets probed by spatially resolved Raman and NMR spectroscopy. Proc. Natl Acad. Sci. USA 119, e2111989119 (2022).

  33. Diddens, C., Li, Y. X. & Lohse, D. Competing Marangoni and Rayleigh convection in evaporating binary droplets. J. Fluid Mech. 914, A23 (2021).

  34. Delgado, J. M. P. Q. Molecular diffusion coefficients of organic compounds in water at different temperatures. J. Phase Equilibria Diffus. 28, 427–432 (2007).

    Article  CAS  Google Scholar 

  35. Zhao, P. Y. et al. Multiphysics analysis for unusual heat convection in microwave heating liquid. AIP Adv. 10, 085201 (2020).

  36. Khorshid, M. et al. An efficient low-cost device for sampling exhaled breath condensate EBC. Adv. Sensor Res. 3, 2400020 (2024).

    Article  CAS  Google Scholar 

  37. Karyakin, A. A. et al. Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochem. Commun. 83, 81–84 (2017).

    Article  CAS  Google Scholar 

  38. Saigal, S. & Doyle, L. W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371, 261–269 (2008).

    Article  PubMed  Google Scholar 

  39. Richter, L. L. et al. Temporal trends in neonatal mortality and morbidity following spontaneous and clinician-initiated preterm birth in Washington State, USA: a population-based study. BMJ Open 9, e023004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Butler, R. B. A. Preterm Birth: Causes, Consequences, and Precention (eds Behram, R. E. & Stith Butler, A.) 313–346 (National Academies Press, 2007).

  41. Lu, L. et al. Transcriptional modulation of intestinal innate defense/inflammation genes by preterm infant microbiota in a humanized gnotobiotic mouse model. PLoS ONE 10, e0124504 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu, J. et al. Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci. Rep. 8, 5443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lu, J. et al. Early preterm infant microbiome impacts adult learning. Sci. Rep. 12, 3310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, S. J. & Im, D. S. Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br. J. Pharmacol. 176, 938–949 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patil, M. J., Meeker, S., Bautista, D., Dong, X. & Undem, B. J. Sphingosine-1-phosphate activates mouse vagal airway afferent C-fibres via S1PR3 receptors. J. Physiol. 597, 2007–2019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thebaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers 5, 78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stevens, N. C. et al. Alteration of glycosphingolipid metabolism by ozone is associated with exacerbation of allergic asthma characteristics in mice. Toxicol. Sci. 191, 79–89 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Mirhoseini, S. H., Nikaeen, M., Khanahmad, H., Hatamzadeh, M. & Hassanzadeh, A. Monitoring of airborne bacteria and aerosols in different wards of hospitals—particle counting usefulness in investigation of airborne bacteria. Ann. Agric. Environ. Med. 22, 670–673 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Park, D. U., Yeom, J. K., Lee, W. J. & Lee, K. M. Assessment of the levels of airborne bacteria, Gram-negative bacteria, and fungi in hospital lobbies. Int. J. Environ. Res. Public Health 10, 541–555 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Buda, R. et al. Dynamics of passive response to a sudden decrease in external osmolarity. Proc. Natl Acad. Sci. USA 113, E5838–E5846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schulte, F., Lingott, J., Panne, U. & Kneipp, J. Chemical characterization and classification of pollen. Anal. Chem. 80, 9551–9556 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Guedes, A., Ribeiro, H., Fernández-González, M., Aira, M. J. & Abreu, I. Pollen Raman spectra database: application to the identification of airborne pollen. Talanta 119, 473–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, D. J. & White, J. C. Benefit of nano-enabled agrochemicals. Nat. Food 3, 983–984 (2022).

    Article  PubMed  Google Scholar 

  54. Ho, C. S. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 10, 4927 (2019).

  55. Wang, C. et al. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7, 157–167 (2024).

  56. Weisbecker, H. et al. AI-assisted multimodal breath sensing system with semiconductive polymers for accurate monitoring of ammonia biomarkers. Adv. Mater. Technol. 9, 2301884 (2024).

  57. Li, J. et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 12, 5484 (2021).

  58. Li, T. et al. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023).

    Article  CAS  Google Scholar 

  59. Ma, J. et al. A lipid-inspired highly adhesive interface for durable superhydrophobicity in wet environments and stable jumping droplet condensation. ACS Nano 3, 4251–4262 (2022).

  60. Mustafa, F. & Andreescu, S. Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 7, 168 (2018).

  61. Ho, D. H., Choi, Y. Y., Jo, S. B., Myoung, J. M. & Cho, J. H. Sensing with MXenes: progress and prospects. Adv. Mater. 33, 2005846 (2021).

  62. Huang, L. B. et al. Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers. Nano Lett. 23, 597–605 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, K. N. et al. A polarity-sensitive ratiometric fluorescence probe for monitoring changes in lipid droplets and nucleus during ferroptosis. Angew. Chem. Int. Ed. 60, 15095–15100 (2021).

    Article  CAS  Google Scholar 

  64. Dai, T. J. et al. An AIEgen as an intrinsic antibacterial agent for light-up detection and inactivation of intracellular Gram-positive bacteria. Adv. Healthcare Materials 10, 2100885 (2021).

  65. Zhang, J. J. et al. Ultrasensitive point-of-care biochemical sensor based on metal-AlEgen frameworks. Sci. Adv. 8, eabo1874 (2022).

  66. Thomas, V., Clark, J. & Dore, J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. 10, 1485–1504 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. M. Watters for scientific editing of the manuscript; E. Augustine from the University of Chicago “Engineering + Technical Support Group” for the three-dimensional modeling and fabrication of the ABLE device; and J. Smous, J. Holewczynski and M. Engstrom from the University of Notre Dame Engineering and Design Core Facility for the three-dimensional modeling and fabrication of the ABLE test bed for the dew point measurement. The work is supported by US Army Research Office no. W911NF-24-1-0053 (B.T.), University of Chicago startup grant (B.T.), University of Notre Dame startup grant (J.M.), the Technology Development Fund from the Berthiaume Institute for Precision Health (J.M.), the Grier Prize for Innovation Research in the Biophysical Sciences (P.L.) and the National Institute of Health nos. R01 HD105234 (E.C.C. and J.L.) and R21 NS121432 (E.C.C. and J.L.).

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived by J.M. and B.T. J.M. designed the ABLE device. Experimental measurements were performed by J.M., M.L., P.L., Y.M. and A.P.D.R., with input and resources provided by B.T., J.Y., E.C.C., Z.K. and J.M. Theoretical modeling and numerical simulations were performed by J.M. and S.P.P. Animal models for preterm infant disease and the sequential metabolomic analysis was provided by J.L., J.C., Y.Y., K.O. and E.C.C. The paper was prepared by J.M., M.L., P.L., J.L., J.C., Y.M., S.P.P. and B.T., with contributions and final approval from all authors.

Corresponding authors

Correspondence to Jingcheng Ma, Erika C. Claud or Bozhi Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Can Dincer, Alina Vasilescu and Daniel Orejon for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–15, Tables 1–3 and Figs. 1–35.

Reporting Summary

Supplementary Data 1

Data required to recreate the plots for each figure in the Supplementary Information.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Laune, M., Li, P. et al. Airborne biomarker localization engine for open-air point-of-care detection. Nat Chem Eng 2, 321–333 (2025). https://doi.org/10.1038/s44286-025-00223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00223-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research