Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Guiding the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ remains challenging. Here the authors combine liquid-cell transmission electron microscopy, scaling theory and molecular dynamics simulations to image and quantify self-assembly processes of gold nanocubes into distinct superlattices.
The geometric design space of continuous flow reactors for optimal process intensification is prohibitively large for a comprehensive search, but incorporation of multi-fidelity optimization techniques using computer simulations and additive manufacturing can rapidly improve reactor performance.
Metal–organic frameworks are promising materials for use as sustainable membrane technology. However, their use for liquid-phase separation is limited. We developed a metal–organic framework with topological defects to build membranes with high performance for molecular separation in methanol. The efficient and durable sieving of molecules through membrane modules indicates their potential for refining chemical products.
Identifying the optimal geometry of continuous flow reactors is a major challenge due to the large available parameter design space. Here the authors combine a machine learning-assisted methodology with computational fluid dynamics and additive manufacturing for the design of more efficient, complex coiled-tube reactors.
Understanding and preventing thermal runaway is critical to ensuring the safe and reliable operation of batteries. Here the authors demonstrate the large-scale production of a highly conductive graphene-based foil current collector to mitigate thermal runaway in high-capacity batteries.
Comparative process analysis is foundational to chemical engineering. This Editorial discusses comparative language and the role that narrative choices play in communicating these analyses.
Engineering synthetic cells faces the challenge of transferring biomolecules, such as nucleic acids and proteins, through simple lipid bilayers. Now, a study reveals how energy-dissipating oil droplets can create reconfigurable passageways shuttling biomolecules across liposomal compartments.
Efficiently separating high-value targets with small structural differences in liquids is important to the chemical industry. Here the authors develop a metal–organic framework-based membrane with engineered topologic defects for accurate and prolonged sieving of species with molecular weights below 350 g mol−1.
Jason Hallett, professor of sustainable chemical technology at Imperial College London, talks to Nature Chemical Engineering about technology translation for spinout companies and the use of ionic liquids in sustainable chemical process design.
Switching between liquid capture and release is important in handling various liquids. Here the authors present connected polyhedral frames that form a network of units that capture or release liquid that is readily switchable locally, dynamically and reversibly, thus functioning as a versatile fluidic processor.
The characterization of light irradiation for intensified flow reactors extends beyond the determination of photon fluxes, requiring the precise determination of optical path lengths. Here the authors introduce a systematic workflow that integrates radiometry, ray-tracing simulations and actinometry to obtain these system parameters.
Controllable and reversible transmembrane transport is a fundamental challenge in building synthetic cells. Here, interfacial energy-mediated bulk transport across artificial cell membranes is developed to mimic a rudimentary form of endocytosis- and exocytosis-like behaviors, facilitating the shuttling of biomolecules such as enzyme substrates, ions and nucleic acids.
All-solid-state lithium–sulfur batteries have been recognized for their high energy density and safety. This Perspective explores sulfur redox in the solid state, emphasizing the critical roles of electrochemical kinetics, thermodynamics, mass transport and advanced techniques such as cryogenic electron microscopy to help bridge gaps in current understanding.
Emulsions underpin a wide range of important natural phenomena and many technological applications. However, it remains challenging to create emulsion droplets with specific internal structures. Now, a method has been developed to create macromolecular emulsions with custom architectures by applying non-equilibrium thermodynamic principles to condensate formation.