Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 220 results
Advanced filters: Author: Andrew Clifford Clear advanced filters
  • Parallel operation of two exchange-only qubits consisting of six quantum dots arranged linearly is shown to be achievable and maintains qubit control quality compared with sequential operation, with potential for use in scaled quantum computing.

    • Mateusz T. Mądzik
    • Florian Luthi
    • James S. Clarke
    ResearchOpen Access
    Nature
    Volume: 647, P: 870-875
  • Studying many-body quantum chaos on current quantum hardware is hindered by noise and limited scalability. Now it is shown that a superconducting processor, combined with error mitigation, can accurately simulate dual-unitary circuit dynamics.

    • Laurin E. Fischer
    • Matea Leahy
    • Sergey N. Filippov
    Research
    Nature Physics
    Volume: 22, P: 302-307
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • In this work, an exotic nuclear decay in one dimension is simulated using IonQ trapped-ion quantum computers. The coherent evolution of many decay channels is classically hard and quantum simulation of these processes may impact future searches for new physics.

    • Ivan A. Chernyshev
    • Roland C. Farrell
    • Martin Roetteler
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-12
  • Experiments on a noisy 127-qubit superconducting quantum processor report the accurate measurement of expectation values beyond the reach of current brute-force classical computation, demonstrating evidence for the utility of quantum computing before fault tolerance.

    • Youngseok Kim
    • Andrew Eddins
    • Abhinav Kandala
    ResearchOpen Access
    Nature
    Volume: 618, P: 500-505
  • Quantum error correction protocols aim at protecting quantum information from corruption due to decoherence and imperfect control. Using three superconducting transmon qubits, Chow et al. demonstrate necessary elements for the implementation of the surface error correction code on a two-dimensional lattice.

    • Jerry M. Chow
    • Jay M. Gambetta
    • M Steffen
    Research
    Nature Communications
    Volume: 5, P: 1-9
  • A materials platform using tantalum as a base layer and silicon as the substrate to construct superconducting qubits enables device performance improvements such as millisecond lifetimes and coherence times, as well as high time-averaged quality factors.

    • Matthew P. Bland
    • Faranak Bahrami
    • Andrew A. Houck
    Research
    Nature
    Volume: 647, P: 343-348
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • Using a cryogenic 300-mm wafer prober, a new approach for the testing of hundreds of industry-manufactured spin qubit devices at 1.6 K provides high-volume data on performance, allowing optimization of the complementary metal–oxide–semiconductor (CMOS)-compatible fabrication process.

    • Samuel Neyens
    • Otto K. Zietz
    • James S. Clarke
    ResearchOpen Access
    Nature
    Volume: 629, P: 80-85
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • Fault-tolerant circuits for the control of a logical qubit encoded in 13 trapped ion qubits through a Bacon–Shor quantum error correction code are demonstrated.

    • Laird Egan
    • Dripto M. Debroy
    • Christopher Monroe
    Research
    Nature
    Volume: 598, P: 281-286
  • High-performance all-electrical control is a prerequisite for scalable silicon quantum computing. The switchable interaction between spins and orbital motion of electrons in silicon quantum dots now enables the electrical control of a spin qubit with high fidelity and speed, without the need for integrating a micromagnet.

    • Will Gilbert
    • Tuomo Tanttu
    • Andrew S. Dzurak
    Research
    Nature Nanotechnology
    Volume: 18, P: 131-136
  • For solid-state qubits, the material environment hosts sources of errors that vary in time and space. This systematic analysis of errors affecting high-fidelity two-qubit gates in silicon can inform the design of large-scale quantum computers.

    • Tuomo Tanttu
    • Wee Han Lim
    • Andrew S. Dzurak
    ResearchOpen Access
    Nature Physics
    Volume: 20, P: 1804-1809
  • A scheme to prepare a magic state, an important ingredient for quantum computers, on a superconducting qubit array using error correction is proposed that produces better magic states than those that can be prepared using the individual qubits of the device.

    • Riddhi S. Gupta
    • Neereja Sundaresan
    • Benjamin J. Brown
    ResearchOpen Access
    Nature
    Volume: 625, P: 259-263
  • It is often assumed that systems that can be analyzed accurately via mean-field theory would not be worth looking at using quantum algorithms, given entanglement plays no key role. Here, the authors show instead that a quantum advantage can be expected for simulating the exact time evolution of such electronic systems.

    • Ryan Babbush
    • William J. Huggins
    • Joonho Lee
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • The physical realization of a quantum computer requires built-in error-correcting codes that compensate the disruption of quantum information arising from noise. Here, the authors demonstrate a quantum error detection scheme for arbitrary single-qubit errors on a four superconducting qubit lattice.

    • A.D. Córcoles
    • Easwar Magesan
    • Jerry M. Chow
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-10
  • Although quantum computers are still in their infancy, their computational power is growing rapidly. This Perspective surveys and critiques the known ways to benchmark quantum computer performance, highlighting new challenges anticipated on the road to utility-scale quantum computing.

    • Timothy Proctor
    • Kevin Young
    • Robin Blume-Kohout
    Reviews
    Nature Reviews Physics
    Volume: 7, P: 105-118
  • A recurrent, transformer-based neural network, called AlphaQubit, learns high-accuracy error decoding to suppress the errors that occur in quantum systems, opening the prospect of using neural-network decoders for real quantum hardware.

    • Johannes Bausch
    • Andrew W. Senior
    • Pushmeet Kohli
    ResearchOpen Access
    Nature
    Volume: 635, P: 834-840
  • Interactions between qubits and defect-related two-level systems in superconducting qubit devices are a major source of noise fluctuations that hinder error-mitigation performance. Here, the authors experimentally show that modulating this interaction can reduce noise fluctuation and improve error mitigation performance.

    • Youngseok Kim
    • Luke C. G. Govia
    • Abhinav Kandala
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Multielectron quantum dots offer a promising platform for high-performance spin qubits; however, previous demonstrations have been limited to single-qubit operation. Here, the authors report a universal gate set and two-qubit Bell state tomography in a high-occupancy double quantum dot in silicon.

    • Ross C. C. Leon
    • Chih Hwan Yang
    • Andrew S. Dzurak
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • Childhood infection with SARS CoV2 is associated with a milder course of infection but the immunopathogenesis of this remains unclear. Here the authors explore immunological differences in the innate immune system during acute and convalescent SARS CoV2 infection in the young.

    • Melanie R. Neeland
    • Samantha Bannister
    • Richard Saffery
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-5
  • Qubit-based simulations of gauge theories are challenging as gauge fields require high-dimensional encoding. Now a quantum electrodynamics model has been demonstrated using trapped-ion qudits, which encode information in multiple states of ions.

    • Michael Meth
    • Jinglei Zhang
    • Martin Ringbauer
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 570-576
  • There has been significant interest in using spin-waves or magnons for information processing, due to their low energy dissipation and short wavelength at terahertz frequencies, however, manipulating magnons can be challenging. Here, Kim et al show that magnons in Sr2IrO4 are extremely strain sensitive, with small applied strains leading to large variation in the magnon energy.

    • Hun-Ho Kim
    • Kentaro Ueda
    • Matteo Minola
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-6
  • Large quantum systems with high entanglement are difficult to simulate with classical methods, but now it is shown that entanglement may be beneficial for quantum simulations.

    • Qi Zhao
    • You Zhou
    • Andrew M. Childs
    Research
    Nature Physics
    Volume: 21, P: 1338-1345
  • Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.

    • Crystal Noel
    • Pradeep Niroula
    • Christopher Monroe
    Research
    Nature Physics
    Volume: 18, P: 760-764
  • The PEAK family of pseudokinases is known to play oncogenic roles in poor-prognosis triple negative breast cancer (TNBC). Here this group identifies the role of calcium/calmodulin-dependent protein kinase 2 (CAMK2) in targeting downstream of PEAK1 thereby utilizing RA306 (CAMK2 inhibitor) to effectively attenuate TNBC xenograft growth and block metastasis as well.

    • Xue Yang
    • Xiuquan Ma
    • Roger J. Daly
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926
  • Genome-wide analysis identifies variants associated with the volume of seven different subcortical brain regions defined by magnetic resonance imaging. Implicated genes are involved in neurodevelopmental and synaptic signaling pathways.

    • Claudia L. Satizabal
    • Hieab H. H. Adams
    • M. Arfan Ikram
    Research
    Nature Genetics
    Volume: 51, P: 1624-1636
  • Primary biliary cirrhosis is an autoimmune liver disease with poor therapeutic options. Here Cordell et al. a perform meta-analysis of European genome-wide association studies identifying six novel risk loci and a number of potential therapeutic pathways.

    • Heather J. Cordell
    • Younghun Han
    • Katherine A. Siminovitch
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-11
  • The hippocampus in mammalian brain varies in size across individuals. Here, Hibar and colleagues perform a genome-wide association meta-analysis to find six genetic loci with significant association to hippocampus volume.

    • Derrek P. Hibar
    • Hieab H. H. Adams
    • M. Arfan Ikram
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-12
  • The authors defined a roadmap for investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders. Their proof-of-concept study using the largest available common variant data sets for schizophrenia and volumes of several (mainly subcortical) brain structures did not find evidence of genetic overlap.

    • Barbara Franke
    • Jason L Stein
    • Patrick F Sullivan
    Research
    Nature Neuroscience
    Volume: 19, P: 420-431
  • Ossenkoppele, Coomans and colleagues analyzed the tau PET data of 12,048 individuals from 42 cohorts worldwide. They found that age, amyloid-β status, presence of an APOE ε4 allele and female sex are key contributors to tau PET positivity, which should aid clinical decision-making and trial designs.

    • Rik Ossenkoppele
    • Emma M. Coomans
    • Oskar Hansson
    ResearchOpen Access
    Nature Neuroscience
    Volume: 28, P: 1610-1621