Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1190 results
Advanced filters: Author: Chris Li Clear advanced filters
  • It remains unclear whether machine learning methods can accurately identify cancer driver alterations. Here, the authors compare machine learning-based approaches to other computational methods to determine their utility for annotating variants of unknown significance and identifying driver alterations in real-world cancer patient data, demonstrating superior performance.

    • Thinh N. Tran
    • Chris Fong
    • Justin Jee
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • A significant barrier to the mass adoption of electric vehicles is the long charge time (>30 min) of high-energy Li-ion batteries. Here, the authors propose a practical solution to enable fast charging of commercial Li-ion batteries by combining thermal switching and self-heating.

    • Yuqiang Zeng
    • Buyi Zhang
    • Ravi S. Prasher
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • Here the authors identify hotspots for wetland carbon uptake and regions where wetland carbon sinks are most susceptible to hydrological shifts. They show that two decades of improved carbon sinks in northern mid- to high-latitude wetlands are offset by declining efficiencies elsewhere.

    • Junjie Li
    • Junji Yuan
    • Weixin Ding
    Research
    Nature Ecology & Evolution
    Volume: 9, P: 1861-1872
  • Electric vehicles are increasingly adopted in the USA, with concurrent expansion of charging infrastructure and electricity demand. This Review details these trends and discusses their drivers and broader implications.

    • Matteo Muratori
    • Doug Arent
    • Arthur Yip
    Reviews
    Nature Reviews Clean Technology
    P: 1-19
  • Using large cohorts from published clinical trials involving more than 8,000 patients with multiple sclerosis, a probabilistic machine learning model reconstructs the transition probabilities from data-derived diseases statuses, showing patterns that suggest how progression to severe stages occur and potential inversion of the process.

    • Habib Ganjgahi
    • Dieter A. Häring
    • Chris C. Holmes
    ResearchOpen Access
    Nature Medicine
    P: 1-11
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Electrification is a promising way to decarbonize the chemical industry but could also have important effects on power systems. Here the authors assess the impact of electrifying the production of methanol and ammonia on the Chinese power system in terms of emissions and potential security risks.

    • Jiarong Li
    • Jin Lin
    • Zhipeng Yu
    Research
    Nature Energy
    Volume: 10, P: 762-773
  • With nature in cities, as with the chemicals we ingest, the dose can make the difference. This analysis looks across other studies to find that, in practice, a moderate ‘dose’ of urban greenness provides the greatest mental health benefits.

    • Bin Jiang
    • Jiali Li
    • Pongsakorn Suppakittpaisarn
    Research
    Nature Cities
    Volume: 2, P: 739-748
  • It is challenging to exploit anionic redox activity to boost performance of battery electrodes, especially for anti-fluorite structures. Here the authors report simultaneous anionic and cationic redox in Li5FeO4, which enables its high capacity and eliminates the undesired oxygen gas release.

    • Chun Zhan
    • Zhenpeng Yao
    • Khalil Amine
    Research
    Nature Energy
    Volume: 2, P: 963-971
  • Metal-fluoride-based lithium-ion battery cathodes are typically classified as conversion materials because reconstructive phase transitions are presumed to occur upon lithiation. Metal fluoride lithiation is now shown to be dominated instead by diffusion-controlled displacement mechanisms.

    • Xiao Hua
    • Alexander S. Eggeman
    • Clare P. Grey
    Research
    Nature Materials
    Volume: 20, P: 841-850
  • Cryptands and related molecules are macrocyclic polyethers capable of strongly binding cations. Here, the authors use orthoester exchange for the dynamic one-pot synthesis of crypates, which can bind cations and, given their constitutionally dynamic nature, can also be decomposed to release their guest.

    • René-Chris Brachvogel
    • Frank Hampel
    • Max von Delius
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-7
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Finding new thermoelectric materials that can achieve high performance is vital to realizing the potential of future energy harvesting technology. Here, through computation methods, the authors identify two high-performance full-Heusler thermoelectric compounds with high intrinsic band degeneracy.

    • Jiangang He
    • Yi Xia
    • Chris Wolverton
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-8
  • An innovative method using superconducting sensors precisely measures the recoil energy of lithium-7 nuclei, setting a lower limit on the spatial extent of neutrino wavepackets, advancing understanding of neutrino properties and weak nuclear decays.

    • Joseph Smolsky
    • Kyle G. Leach
    • William K. Warburton
    ResearchOpen Access
    Nature
    Volume: 638, P: 640-644
  • Aided by advanced electron microscopy, the authors imaged dissociated dislocations in Li2MnO3 during an initial charge to 5 V. Such defects possess high gliding and transverse mobility and prompt O2 release. This work provides fresh insights into the defect chemistry of cathode materials for batteries.

    • Qianqian Li
    • Zhenpeng Yao
    • Jinsong Wu
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7
  • Analysis of soundscape data from 139 globally distributed sites reveals that sounds of biological origin exhibit predictable rhythms depending on location and season, whereas sounds of anthropogenic origin are less predictable. Comparisons between paired urban–rural sites show that urban green spaces are noisier and dominated by sounds of technological origin.

    • Panu Somervuo
    • Tomas Roslin
    • Otso Ovaskainen
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 9, P: 1585-1598
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • To better understand the etiology of frailty, the authors perform a large genetic study. They identified 45 additional variants and implicated MET, CHST9, ILRUN, APOE, CGREF1 and PPP6C as potential causal genes, linking frailty to immune regulation, metabolism and cellular signaling.

    • Jonathan K. L. Mak
    • Chenxi Qin
    • Juulia Jylhävä
    ResearchOpen Access
    Nature Aging
    Volume: 5, P: 1589-1600