Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 178 results
Advanced filters: Author: Jessica Sage Clear advanced filters
  • Telomerase reverse-trancriptase promoter mutations have been recently found in human melanomas. Here, Nault et al.identify telomerase reverse-trancriptase promoter mutations as the most frequent somatic genetic alterations in hepatocellular carcinomas and as the first mutation identified in cirrhotic preneoplastic lesions.

    • Jean Charles Nault
    • Maxime Mallet
    • Jessica Zucman-Rossi
    ResearchOpen Access
    Nature Communications
    Volume: 4, P: 1-7
  • A pangenome of oat, assembled from 33 wild and domesticated oat lines, sheds light on the evolution and genetic diversity of this cereal crop and will aid genomics-assisted breeding to improve productivity and sustainability.

    • Raz Avni
    • Nadia Kamal
    • Martin Mascher
    ResearchOpen Access
    Nature
    Volume: 649, P: 131-139
  • Analysis of whole-genome sequence data from 3,474 families finds an excess of private, likely gene-disrupting variants in individuals with autism. These variants are under purifying selection and suggest candidate genes not previously associated with autism.

    • Amy B. Wilfert
    • Tychele N. Turner
    • Evan E. Eichler
    Research
    Nature Genetics
    Volume: 53, P: 1125-1134
  • An expert-elicitation process identifies current methodological barriers for monitoring terrestrial biodiversity, and how technological and procedural development of robotic and autonomous systems may contribute to overcoming these challenges.

    • Stephen Pringle
    • Martin Dallimer
    • Zoe G. Davies
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 9, P: 1031-1042
  • Endangered languages often contain key linguistic insights found nowhere else. But the tongues are disappearing faster than scientists can document them. Jessica Ebert reports.

    • Jessica Ebert
    News
    Nature
    Volume: 438, P: 148-149
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • PPAR-alpha is a ligand responsive transcription factor that mediates energy metabolism during fasting in the liver. Here the authors show that Gm15441 is a PPAR-alpha dependent lncRNA that prevents the expression of its antisense transcript, thioredoxin interacting protein (TXNIP), and attenuates inflammasome activation.

    • Chad N. Brocker
    • Donghwan Kim
    • Frank J. Gonzalez
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Influenza A virus (IAV) infection induces transcription termination defects in host cells, an effect modulated by SUMOylation of an intrinsically disordered region of the influenza NS1 protein expressed by the 1918 pandemic IAV strain.

    • Nan Zhao
    • Vittorio Sebastiano
    • Ivan Marazzi
    Research
    Nature Structural & Molecular Biology
    Volume: 25, P: 885-893
  • The affected cellular populations during Alzheimer’s disease progression remain understudied. Here the authors use a cohort of 84 donors, quantitative neuropathology and multimodal datasets from the BRAIN Initiative. Their pseudoprogression analysis revealed two disease phases.

    • Mariano I. Gabitto
    • Kyle J. Travaglini
    • Ed S. Lein
    ResearchOpen Access
    Nature Neuroscience
    Volume: 27, P: 2366-2383
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Mutations in the gene encoding the helicase senataxin have well established associations with the neurodegenerative disease ALS. Marazzi et al. show that senataxin can also attenuate virus-triggered responses by controlling RNA polymerase activity at genes encoding antiviral molecules.

    • Matthew S Miller
    • Alexander Rialdi
    • Ivan Marazzi
    Research
    Nature Immunology
    Volume: 16, P: 485-494
  • Newly sequenced seagrass genomes unveil a hexaploid ancestry for seagrasses. The transition to marine environments involved fine-tuning of many processes that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been rare.

    • Xiao Ma
    • Steffen Vanneste
    • Yves Van de Peer
    Research
    Nature Plants
    Volume: 10, P: 240-255
  • Slowly evolving cnidarians are useful models to study genome architecture. This study shows that sea anemones have a high degree of chromosomal macrosynteny, but poor microsynteny conservation. This is correlated with a small genome size and short distances of cis-regulatory elements to genes.

    • Bob Zimmermann
    • Juan D. Montenegro
    • Ulrich Technau
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-16
  • Transient micro-electromechanical system (MEMS) devices that are based on water-soluble material platforms can provide safe implants for biointegrated systems.

    • Quansan Yang
    • Tzu-Li Liu
    • John A. Rogers
    Research
    Nature Electronics
    Volume: 5, P: 526-538
  • Cyclins A2 and E1 are known to regulate the cell cycle by promoting S phase entry and progression. Here, they identify an aggressive hepatocellular carcinoma subgroup exhibiting cyclin activation through various mechanisms and find this subgroup to display replication stress-induced structural rearrangements frequently activating TERT promoter.

    • Quentin Bayard
    • Léa Meunier
    • Eric Letouzé
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14
  • Jessica Zucman-Rossi and colleagues identify clonal integrations of adeno-associated virus type 2 (AAV2) in hepatocellular carcinomas. These AAV2 integrations occurred within known cancer driver genes, suggesting a pathogenic role of AAV2 in these patients.

    • Jean-Charles Nault
    • Shalini Datta
    • Jessica Zucman-Rossi
    Research
    Nature Genetics
    Volume: 47, P: 1187-1193
  • Structural variants (SVs) contribute to the genetic architecture of many brain-related disorders. Here, the authors integrate SV calls from genome sequencing (n = 755) with RNA-seq data (n = 629) from post-mortem dorsal lateral prefrontal cortex to annotate the gene regulatory effects of SVs in the human brain and their potential to contribute to disease.

    • Lide Han
    • Xuefang Zhao
    • Douglas M. Ruderfer
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13