Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 834 results
Advanced filters: Author: Michael D Reed Clear advanced filters
  • Over 20 species of geographically and phylogenetically diverse bird species produce convergent whining vocalizations towards their respective brood parasites. Model presentation and playback experiments across multiple continents suggest that these learned calls provoke an innate response even among allopatric species.

    • William E. Feeney
    • James A. Kennerley
    • Damián E. Blasi
    Research
    Nature Ecology & Evolution
    P: 1-13
  • Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare cancer. Here, the authors develop a NLPHL specific model to identify 34 distinct cell states across 14 cell types that co-occur within 3 lymphocyte predominant ecotypes (LPEs) for 171 cases.

    • Ajay Subramanian
    • Shengqin Su
    • Michael Sargent Binkley
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • In plants, oxidosqualene cyclases (OSCs) perform a highly complex single reaction to generate the basis of all triterpenoid diversity. Here the authors leverage genome mining and transient expression to uncover multiple evolutionary and mechanistic insights for OSCs across the plant kingdom.

    • Michael J. Stephenson
    • Charlotte Owen
    • Anne Osbourn
    ResearchOpen Access
    Nature Chemical Biology
    P: 1-11
  • A 1,024-channel microelectrode array is delivered to the brain cortex via a minimally invasive incision in the skull and dura, and allows recording, stimulation and neural decoding across large portions of the brain in porcine models and human neurosurgical patients.

    • Mark Hettick
    • Elton Ho
    • Benjamin I. Rapoport
    ResearchOpen Access
    Nature Biomedical Engineering
    P: 1-16
  • Head and neck squamous cell carcinoma (HNSCC) frequency and risk factors vary considerably across regions and ancestries. Here, the authors conduct a multi-ancestry genome-wide association study and fine mapping study of HNSCC subsites in cohorts from multiple continents, finding susceptibility and protective loci, gene-environment interactions, and gene variants related to immune response.

    • Elmira Ebrahimi
    • Apiwat Sangphukieo
    • Tom Dudding
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Utilizing single-cell RNA sequencing, the authors here find that IL1B gene expression in peripheral blood monocytes associates with smaller HIV-1 reservoir size in people treated during acute infection, suggesting IL1B may be a natural latency reversing factor decreasing the reservoir via NF-κB activation.

    • Philip K. Ehrenberg
    • Aviva Geretz
    • Rasmi Thomas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • O-GlcNAc transferase (OGT) mediates antiviral host immune response. Here, the authors identify a catalytic activity-independent function of OGT in restraining influenza A virus replication by translocating to lipid droplets and limiting their accumulation following interaction with viral RNA.

    • Hong Dong
    • Chenxi Liang
    • Haitao Wen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A newly identified coronavirus isolated from farmed minks can use the receptor ACE2 to infect cells of different mammalian species, including human cells, which has implications for potential zoonotic spillover events.

    • Ningning Wang
    • Weiwei Ji
    • Shuo Su
    Research
    Nature
    Volume: 642, P: 739-746
  • There are no vaccines or antivirals available against enterovirus D68. Here, the authors report Jun6504 as a 2C inhibitor and show that it provides broad-spectrum antiviral activity against EV-D68, EV-A71, and CVB3 and potent antiviral efficacy in a neonatal neurological mouse model of EV-D68 infection.

    • Kan Li
    • Michael J. Rudy
    • Jun Wang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Elaborate traits like birdsong are thought to be sexually selected in males but are poorly understood in females. This study shows that year-round territoriality and biparental care are selected for female birdsong, whereas migration, seasonal territoriality, and loss of male care led to losses of female song.

    • Karan J. Odom
    • Marcelo Araya-Salas
    • Katharina Riebel
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Existence of 150–170 serologically distinct human rhinoviruses (HRV) has hampered vaccine development for this human pathogen. Here, the authors show that a prime-boost regimen with an inactivated 50-valent HRV vaccine induces neutralizing antibody responses to diverse HRV serotypes in rhesus macaques.

    • Sujin Lee
    • Minh Trang Nguyen
    • Martin L. Moore
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Solid organ transplant recipients are at increased risk of infectious disease and have unique molecular pathophysiology. Here the authors use host-microbe profiling to assess SARS-CoV-2 infection and immunity in solid organ transplant recipients, showing enhanced viral abundance, impaired clearance, and increased expression of innate immunity genes.

    • Harry Pickering
    • Joanna Schaenman
    • Charles R. Langelier
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Here, using longitudinal pre- and post-infection samples from the RV217 Early Capture HIV Cohort Study, the authors show that mucosa-associated invariant T (MAIT) cells become activated and expand during the early acute phase of HIV infection, with subsequent reprogramming towards innate-like functionality.

    • Kerri G. Lal
    • Dohoon Kim
    • Johan K. Sandberg
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Biological nitrogen fixation may impose stronger constraints on the carbon sink in natural terrestrial biomes and represent a larger source of agricultural nitrogen than is generally considered in analyses of the global nitrogen cycle.

    • Carla R. Reis Ely
    • Steven S. Perakis
    • Nina Wurzburger
    Research
    Nature
    Volume: 643, P: 705-711