Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 285 results
Advanced filters: Author: Michelle Han Clear advanced filters
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The sulfation of protein tyrosine residues is a common post-translational modification in eukaryotes. Here, Han et al.show that the protein RaxST, produced by a plant bacterium, has tyrosine sulfotransferase activity, demonstrating for the first time tyrosine sulfation in prokaryotes.

    • Sang-Wook Han
    • Sang-Won Lee
    • Pamela C. Ronald
    Research
    Nature Communications
    Volume: 3, P: 1-5
  • The authors show that LARP4 drives T cell dysfunction in tumors by promoting hypertranslation of oxidative phosphorylation-related mRNAs, resulting in mitochondrial dysfunction. They also target LARP4 to enhance T cell persistence and anti-tumor activity and provide a CAR T cell strategy for treating solid and liquid tumors.

    • Yi Liu
    • Haochen Ni
    • Meng Michelle Xu
    Research
    Nature Immunology
    Volume: 26, P: 1488-1500
  • A genome-wide association study meta-analysis combined with multiomics data of osteoarthritis identifies 700 effector genes as well as biological processes with a convergent involvement of multiple effector genes; 10% of these genes express the target of approved drugs.

    • Konstantinos Hatzikotoulas
    • Lorraine Southam
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 641, P: 1217-1224
  • Meta-analysis of genome-wide association studies on Alzheimer’s disease and related dementias identifies new loci and enables generation of a new genetic risk score associated with the risk of future Alzheimer’s disease and dementia.

    • Céline Bellenguez
    • Fahri Küçükali
    • Jean-Charles Lambert
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 412-436
  • Adoptive T-cell immunotherapy offers promise to patients who are resistant to standard anti-viral strategies. Here the authors describe clinical observations in patients with viral complications treated with adoptive immunotherapy over the last 15 years.

    • Michelle A. Neller
    • George R. Ambalathingal
    • Rajiv Khanna
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Genomic studies often lack representation from diverse populations, limiting equitable insights. Here, the authors show that the BIG Initiative captures extensive genetic diversity and reveals ancestry-linked health disparities in a community-based Mid-South cohort.

    • Silvia Buonaiuto
    • Franco Marsico
    • Vincenza Colonna
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Better understanding of the genetic basis of acne can pave the way to more effective treatments. Here, the authors perform a genome-wide association study meta-analysis of >20,000 cases and identify 29 new acne susceptibility loci, uncovering genetic links to Mendelian hair and skin disorders and other complex traits.

    • Brittany L. Mitchell
    • Jake R. Saklatvala
    • Michael A. Simpson
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-9
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Several multi-cancer GWAS loci within the region encoding telomerase reverse transcriptase (TERT) have been identified. Here, the authors explore the locus within TERT intron 4, link it with a variable number tandem repeat (VNTR), and investigate its biological significance and role in cancer.

    • Oscar Florez-Vargas
    • Michelle Ho
    • Ludmila Prokunina-Olsson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Anterior Uveitis is a common inflammatory eye disease that can result in vision loss. Here, the authors perform GWAS and whole-exome analyses of Anterior Uveitis to identify the underlying genetics of HLA-B*27 positive and negative forms of the disease.

    • Sahar Gelfman
    • Arden Moscati
    • Giovanni Coppola
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-13
  • Post-traumatic stress disorder (PTSD) is a common mental health problem. Here, the authors report a GWAS from the Psychiatric Genomics Consortium in which they identify two risk loci in European ancestry and one locus in African ancestry individuals and find that PTSD is genetically correlated with several other psychiatric traits.

    • Caroline M. Nievergelt
    • Adam X. Maihofer
    • Karestan C. Koenen
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-16
  • Several studies show that APOE-ε4 coding variants are associated with Alzheimer’s disease (AD) risk. Here, Zhou et al. perform fine-mapping of the APOE region and find AD risk haplotypes with non-coding variants in the PVRL2 and APOC1 regions that are associated with relevant endophenotypes.

    • Xiaopu Zhou
    • Yu Chen
    • Nancy Y. Ip
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-16
  • Genome-wide association analyses of prostate cancer in men from sub-Saharan Africa identify population-specific risk variants and regional differences in effect sizes. Founder effects contribute to continental differences in the genetic architecture of prostate cancer.

    • Rohini Janivara
    • Wenlong C. Chen
    • Timothy R. Rebbeck
    Research
    Nature Genetics
    Volume: 56, P: 2093-2103
  • The oocyte-to-embryo transition marks the beginning of development but the mechanisms underlying this process are incompletely described. Here they show that PRDM10 activates Septin11 and is required for progression through the oocyte-to-embryo transition.

    • Michelle K. Y. Seah
    • Brenda Y. Han
    • Daniel M. Messerschmidt
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Primary open-angle glaucoma (POAG) is highly heritable, yet not well understood from a genetic perspective. Here, the authors perform a meta-analysis of genome-wide association studies in 34,179 POAG cases, identifying 44 previously unreported risk loci and mapping effects across multiple ethnicities.

    • Puya Gharahkhani
    • Eric Jorgenson
    • Janey L. Wiggs
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352