Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 225 results
Advanced filters: Author: Z. Xiong Clear advanced filters
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • Generation of orbital currents in a non-magnetic material can be useful to build efficient orbitronic devices. Now, the interplay of chiral phonons and electrons is shown to produce orbital currents in α-quartz.

    • Yoji Nabei
    • Cong Yang
    • Dali Sun
    Research
    Nature Physics
    Volume: 22, P: 245-251
  • Earth-abundant cobalt-based catalysts have shown promise to replace iridium as anode catalysts in proton-exchange-membrane water electrolysers, but unfortunately they exhibit high degradation rates. Now, a lanthanum and calcium co-modification of Co3O4 is presented, in which lanthanum tunes the water–surface interactions to suppress cobalt dissolution and improve stability, while calcium leaching creates coordinatively unsaturated cobalt sites, leading to enhanced activity.

    • Luqi Wang
    • Yixin Hao
    • Shengjie Peng
    Research
    Nature Catalysis
    P: 1-11
  • A new artificial intelligence model, DeepSeek-R1, is introduced, demonstrating that the reasoning abilities of large language models can be incentivized through pure reinforcement learning, removing the need for human-annotated demonstrations.

    • Daya Guo
    • Dejian Yang
    • Zhen Zhang
    ResearchOpen Access
    Nature
    Volume: 645, P: 633-638
  • Deterministically generated single photons are useful for quantum communications, but the processes that create such light are often non-deterministic. Here, the authors enhance the single-photon output probability by multiplexing photons from four temporal modes using fibre-integrated optics.

    • C. Xiong
    • X. Zhang
    • B. J. Eggleton
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • In this Perspective, members of the Aging Biomarker Consortium outline the X-Age Project, an Aging Biomarker Consortium plan for building standardized aging clocks in China. The authors discuss the project roadmap and its aims of decoding aging heterogeneity, detecting accelerated aging early and evaluating geroprotective interventions.

    • Jiaming Li
    • Mengmeng Jiang
    • Guang-Hui Liu
    Reviews
    Nature Aging
    Volume: 5, P: 1669-1685
  • Organic materials potentially offer a low-cost, flexible and environment-friendly route to spintronics. Here, the authors demonstrate an organic spin-valve device in which an electric field can control both the magnitude and the sign of magnetoresistance.

    • Dali Sun
    • Mei Fang
    • Jian Shen
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-6
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • While the conversion of CO2 to high-value products provides a promising means to remove and utilize atmospheric carbon, few materials can do so without wasteful, sacrificial reagents. Here, authors prepare single-atom Co on Bi3O4Br nanosheets as CO2 reduction catalysts using water and light.

    • Jun Di
    • Chao Chen
    • Zheng Liu
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The death of massive stars has traditionally been discovered by explosive events in the gamma-ray band. Liu et al. show that the sensitive wide-field monitor on board Einstein Probe can reveal a weak soft-X-ray signal much earlier than gamma rays.

    • Y. Liu
    • H. Sun
    • X.-X. Zuo
    Research
    Nature Astronomy
    Volume: 9, P: 564-576
  • Monolayer transition metal dichalcogenides host a valley splitting in magnetic field analogous to the Zeeman effect. Here, the authors report that the Zeeman splitting still persists in bilayers of MoTe2 without lifting the valley degeneracy, due to spin–valley-layer coupling.

    • Chongyun Jiang
    • Fucai Liu
    • Wei-Bo Gao
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-6
  • The neural circuits that transmit cool signals remain not fully understood. Here, authors identify a spinal circuit in mice that transmits cool sensations from the skin to the brain, revealing a dedicated neural pathway for detecting innocuous cool temperatures.

    • Hankyu Lee
    • Chia Chun Hor
    • Bo Duan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • The transcription factor CREM is a pivotal regulator of NK cell function, making CREM a valuable target to increase the efficacy of anticancer immunotherapies based on this cell population and chimeric antigen receptors.

    • Hind Rafei
    • Rafet Basar
    • Katayoun Rezvani
    ResearchOpen Access
    Nature
    Volume: 643, P: 1076-1086
  • Entanglement was observed in top–antitop quark events by the ATLAS experiment produced at the Large Hadron Collider at CERN using a proton–proton collision dataset with a centre-of-mass energy of √s  = 13 TeV and an integrated luminosity of 140 fb−1.

    • G. Aad
    • B. Abbott
    • L. Zwalinski
    ResearchOpen Access
    Nature
    Volume: 633, P: 542-547
  • A magnetic-spectrometer-free method for electron–proton scattering data reveals a proton charge radius 2.7 standard deviations smaller than the currently accepted value from electron–proton scattering, yet consistent with other recent experiments.

    • W. Xiong
    • A. Gasparian
    • Z. W. Zhao
    Research
    Nature
    Volume: 575, P: 147-150
  • Sparse labelling and whole-brain imaging are used to reconstruct and classify brain-wide complete morphologies of 1,741 individual neurons in the mouse brain, revealing a dependence on both brain region and transcriptomic profile.

    • Hanchuan Peng
    • Peng Xie
    • Hongkui Zeng
    ResearchOpen Access
    Nature
    Volume: 598, P: 174-181
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The BRAIN Initiative Cell Census Network has constructed a multimodal cell census and atlas of the mammalian primary motor cortex in a landmark effort towards understanding brain cell-type diversity, neural circuit organization and brain function.

    • Edward M. Callaway
    • Hong-Wei Dong
    • Susan Sunkin
    ResearchOpen Access
    Nature
    Volume: 598, P: 86-102
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Antibodies (Abs) targeting highly conserved epitopes are important tools against emerging virus variants. Here, the authors characterize Abs that recognize a cryptic epitope in the receptor-binding domain of SARS-CoV-2 spike that is well conserved and show that these Abs can neutralize several variants of concerns.

    • Tingting Li
    • Wenhui Xue
    • Ningshao Xia
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Here, the authors report the observation of two solid-state analogues of well-known high-energy physics effects in graphene samples irradiated by infrared photons under non-equilibrium conditions. Depending on the carrier density of graphene, they observed asymmetric plasmon damping, and anomalous photocurrents associated with the condensed matter versions of the Cherenkov and Schwinger effects.

    • Y. Dong
    • Z. Sun
    • D. N. Basov
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Optical trapping is a versatile tool for biomedical applications. Here, the authors use an optofluidic lattice to achieve controllable multi-particle hopping and demonstrate single-bacteria-level screening and measurement of binding efficiency of biological binding agents through particle-enabled bacteria hopping.

    • Y. Z. Shi
    • S. Xiong
    • A. Q. Liu
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The use of biomarkers of ageing is crucial for investigating age-related processes. This Review discusses biomarkers of ageing and of ageing-associated physiological changes, at the cellular, tissue and organism levels in humans and non-human primates.

    • Zeming Wu
    • Jing Qu
    • Guang-Hui Liu
    Reviews
    Nature Reviews Molecular Cell Biology
    Volume: 26, P: 826-847
  • In all experimentally observed Weyl semimetals so far, the Weyl points always appear in pairs in the momentum space. Here, the authors report one unpaired Weyl point without surface Fermi arc emerging at the center of the Brillouin zone, which is surrounded by charged Weyl nodal walls in PtGa.

    • J.-Z. Ma
    • Q.-S. Wu
    • M. Shi
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • Patients with multiple myeloma need new therapeutic targets. The authors identify the transmembrane receptor LILRB1 as a potential target as it protects myeloma cells from ferroptosis by facilitating cholesterol uptake and maintaining cholesterol homeostasis and squalene levels.

    • Miao Xian
    • Qiang Wang
    • Qing Yi
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
  • Direct infrared nano-imaging of plasmonic waves in graphene carrying high current density reveals the Fizeau drag of plasmon polaritons by fast-moving quasi-relativistic electrons.

    • Y. Dong
    • L. Xiong
    • D. N. Basov
    Research
    Nature
    Volume: 594, P: 513-516