Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma

Abstract

Fbxw7α is a member of the F-box family of proteins, which function as the substrate-targeting subunits of SCF (Skp1/Cul1/F-box protein) ubiquitin ligase complexes. Using differential purifications and mass spectrometry, we identified p100, an inhibitor of NF-κB signalling, as an interactor of Fbxw7α. p100 is constitutively targeted in the nucleus for proteasomal degradation by Fbxw7α, which recognizes a conserved motif phosphorylated by GSK3. Efficient activation of non-canonical NF-κB signalling is dependent on the elimination of nuclear p100 through either degradation by Fbxw7α or exclusion by a newly identified nuclear export signal in the carboxy terminus of p100. Expression of a stable p100 mutant, expression of a constitutively nuclear p100 mutant, Fbxw7α silencing or inhibition of GSK3 in multiple myeloma cells with constitutive non-canonical NF-κB activity results in apoptosis both in cell systems and xenotransplant models. Thus, in multiple myeloma, Fbxw7α and GSK3 function as pro-survival factors through the control of p100 degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p100 interacts with Fbxw7α through a conserved degron phosphorylated by GSK3.
Figure 2: Fbxw7α controls p100 stability in the nucleus.
Figure 3: p100 is degraded by Fbxw7α and GSK3 independently of NF-κB signalling, but NF-κB proteins compete with Fbxw7α for binding to p100.
Figure 4: Clearance of p100 from the nucleus is crucial for non-canonical NF-κB signalling.
Figure 5: p100 degradation promotes multiple myeloma cell survival.
Figure 6: Expression of a stable p100 mutant impairs the growth of HMMCLs xenotransplanted into immunodeficient mice.
Figure 7: Pharmacologic inhibition of GSK3, Cullin–RING ligases or the proteasome impairs the growth of multiple myeloma cells.
Figure 8: p100 contributes to the sensitivity of multiple myeloma cells to GSK3 inhibition.

Similar content being viewed by others

References

  1. Skaar, J. R., D’Angiolella, V., Pagan, J. K. & Pagano, M. S. F box proteins II. Cell 137, e1351–e1358 (2009).

    Article  Google Scholar 

  2. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  3. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin–RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  4. Hoeck, J. D. et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat. Neurosci. 13, 1365–1372 (2010).

    Article  CAS  Google Scholar 

  5. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    Article  CAS  Google Scholar 

  6. Onoyama, I. et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J. Exp. Med. 204, 2875–2888 (2007).

    Article  CAS  Google Scholar 

  7. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    Article  CAS  Google Scholar 

  8. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    Article  CAS  Google Scholar 

  9. Millman, S. E. & Pagano, M. MCL1 meets its end during mitotic arrest. EMBO Rep. 12, 384–385 (2011).

    Article  CAS  Google Scholar 

  10. Mavrakis, K. J. et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat. Genet. 43, 673–678 (2011).

    Article  CAS  Google Scholar 

  11. O’Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    Article  Google Scholar 

  12. Akhoondi, S. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67, 9006–9012 (2007).

    Article  CAS  Google Scholar 

  13. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  Google Scholar 

  14. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109 Suppl., S81–S96 (2002).

    Article  Google Scholar 

  15. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  Google Scholar 

  16. Dejardin, E. et al. The lymphotoxin- β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    Article  CAS  Google Scholar 

  17. Coope, H. J. et al. CD40 regulates the processing of NF-κB2 p100 to p52. EMBO J. 21, 5375–5385 (2002).

    Article  CAS  Google Scholar 

  18. Weih, F. & Caamano, J. Regulation of secondary lymphoid organ development by the nuclear factor-κB signal transduction pathway. Immunol. Rev. 195, 91–105 (2003).

    Article  CAS  Google Scholar 

  19. Ramakrishnan, P., Wang, W. & Wallach, D. Receptor-specific signaling for both the alternative and the canonical NF-κB activation pathways by NF-κB-inducing kinase. Immunity 21, 477–489 (2004).

    Article  CAS  Google Scholar 

  20. Zarnegar, B. et al. Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-κB activation pathways. Proc. Natl Acad. Sci. USA 101, 8108–8113 (2004).

    Article  CAS  Google Scholar 

  21. Basak, S. et al. A fourth IκB protein within the NF-κB signaling module. Cell 128, 369–381 (2007).

    Article  CAS  Google Scholar 

  22. Mordmuller, B., Krappmann, D., Esen, M., Wegener, E. & Scheidereit, C. Lymphotoxin and lipopolysaccharide induce NF-κB-p52 generation by a co-translational mechanism. EMBO Rep. 4, 82–87 (2003).

    Article  CAS  Google Scholar 

  23. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).

    Article  CAS  Google Scholar 

  24. Fong, A. & Sun, S. C. Genetic evidence for the essential role of β-transducin repeat-containing protein in the inducible processing of NF-κB2/p100. J. Biol. Chem. 277, 22111–22114 (2002).

    Article  CAS  Google Scholar 

  25. Bonizzi, G. et al. Activation of IKKα target genes depends on recognition of specific κB binding sites by RelB:p52 dimers. EMBO J. 23, 4202–4210 (2004).

    Article  CAS  Google Scholar 

  26. Muller, J. R. & Siebenlist, U. Lymphotoxin β receptor induces sequential activation of distinct NF-κB factors via separate signaling pathways. J. Biol. Chem. 278, 12006–12012 (2003).

    Article  Google Scholar 

  27. Staudt, L. M. Oncogenic activation of NF-κB. Cold Spring Harb. Perspect Biol. 2, a000109 (2010).

    Article  Google Scholar 

  28. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  Google Scholar 

  29. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  Google Scholar 

  30. Razani, B. et al. Negative feedback in noncanonical NF-κB signaling modulates NIK stability through IKKα-mediated phosphorylation. Sci. Signal. 3, ra41 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Hao, B., Oehlmann, S., Sowa, M. E., Harper, J. W. & Pavletich, N. P. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26, 131–143 (2007).

    Article  CAS  Google Scholar 

  32. Orian, A. et al. SCF(β)(-TrCP) ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase. EMBO J. 19, 2580–2591 (2000).

    Article  CAS  Google Scholar 

  33. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  Google Scholar 

  34. Solan, N. J., Miyoshi, H., Carmona, E. M., Bren, G. D. & Paya, C. V. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem. 277, 1405–1418 (2002).

    Article  CAS  Google Scholar 

  35. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequentialfunction of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  Google Scholar 

  36. Sangfelt, O., Cepeda, D., Malyukova, A., van Drogen, F. & Reed, S. I. Both SCF(Cdc4 α) and SCF(Cdc4 γ) are required for cyclin E turnover in cell lines that do not overexpress cyclin E. Cell Cycle 7, 1075–1082 (2008).

    Article  CAS  Google Scholar 

  37. Derudder, E. et al. RelB/p50 dimers are differentially regulated by tumor necrosis factor- α and lymphotoxin- β receptor activation: critical roles for p100. J. Biol. Chem. 278, 23278–23284 (2003).

    Article  CAS  Google Scholar 

  38. Shih, V. F. et al. Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proc. Natl Acad. Sci. USA 106, 9619–9624 (2009).

    Article  CAS  Google Scholar 

  39. Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. New Engl. J. Med. 352, 2487–2498 (2005).

    Article  CAS  Google Scholar 

  40. Shah, J. J. et al. Phase 1 dose-escalation study of MLN4924, a novel NAE inhibitor, in patients with multiple myeloma and non-Hodgkin lymphoma. Blood 114, 735–736 (2009).

    Google Scholar 

  41. Thompson, B. J. et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med. 205, 1395–1408 (2008).

    Article  CAS  Google Scholar 

  42. Xie, P., Stunz, L. L., Larison, K. D., Yang, B. & Bishop, G. A. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 27, 253–267 (2007).

    Article  Google Scholar 

  43. Hoeflich, K. P. et al. Requirement for glycogen synthase kinase- 3β in cell survival and NF-κB activation. Nature 406, 86–90 (2000).

    Article  CAS  Google Scholar 

  44. Milhollen, M. A. et al. MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-κB-dependent lymphoma. Blood 116, 1515–1523 (2010).

    Article  CAS  Google Scholar 

  45. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  Google Scholar 

  46. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  Google Scholar 

  47. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426, 87–91 (2003).

    Article  CAS  Google Scholar 

  48. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank I. Aifantis, H. J. Cho, G. Franzoso, W. M. Kuehl and A. Ventura for reagents; B. Aranda-Orgilles for her contribution; and I. Aifantis, G. Franzoso, K. Nakayama, S. Reed and J. R. Skaar for critically reading the manuscript. M.P. is grateful to T. M. Thor for continuous support. This work was supported in part by grant 5P30CA016087-33 from the National Cancer Institute, a fellowship from the American Italian Cancer Foundation and NIH 5T32HL007151-33 to L.B., NIH T32 CA009161 grant to S.M. and grants from the National Institutes of Health (R01-GM057587, R37-CA076584 and R21-CA161108) and the Multiple Myeloma Research Foundation to M.P. M.P. is an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

L.B. conceived and directed the project. L.B. and S.E.M. designed and carried out most experiments. L.S. and O.O. helped with the mouse experiments. C.K. carried out the in vitro experiments shown in Fig. 1d,e and Supplementary Figs S2d and S5b. V.B. and K.S.E-J. carried out the mass spectrometry analysis of the Fbxw7α complex purified by L.B. A.H. provided constructs, cell lines and advice. M.P. coordinated the work and oversaw the results. L.B., S.M. and M.P. wrote the manuscript.

Corresponding authors

Correspondence to Christos A. Kyratsous or Michele Pagano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1777 kb)

Supplementary Table 1

Supplementary Information (XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busino, L., Millman, S., Scotto, L. et al. Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol 14, 375–385 (2012). https://doi.org/10.1038/ncb2463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ncb2463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing