Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The machinery and principles of vesicle transport in the cell

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

(Reprinted from ref. 5, with permission from Elsevier Science.)

Figure 2: An early concept of the role of the SNAREpin in mediating fusion.

References

  1. Block, M., Glick, B., Wilcox, C., Wieland, F. & Rothman, J.E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. USA 85, 7852–7856 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson, D.W. et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Fries, E. & Rothman, J.E. Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc. Natl. Acad. Sci. USA 77, 3870–3874 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fries, E. & Rothman, J.E. Transient activity of Golgi-like membranes as donors of vesicular stomatitis viral glycoprotein in vitro. J. Cell Biol. 90, 697–704 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Balch, W., Dunphy, W., Braell, W. & Rothman, J.E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39, 405–416 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Braell, W., Balch, W., Dobbertin, D. & Rothman, J.E. The glycoprotein that is transported between successive compartments of the Golgi in a cell-free system resides in stacks of cisternae. Cell 39, 511–524 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Balch, W., Glick, B. & Rothman, J.E. Sequential intermediates in the pathway of intercompartmental transport in a cell-free system. Cell 39, 525–536 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Orci, L., Glick, B.S. & Rothman, J.E. A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack. Cell 46, 171–184 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Melançon, P. et al. Involvement of GTP-binding “G” proteins in transport through the Golgi stack. Cell 51, 1053–1062 (1987).

    Article  PubMed  Google Scholar 

  10. Malhotra, V., Serafini, T., Orci, L., Shepherd, J.C. & Rothman, J.E. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58, 329–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Waters, M., Serafini, T. & Rothman, J.E. 'Coatomer': A cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349, 248–251 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Serafini, T. et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Orci, L., Palmer, D.J., Amherdt, M. & Rothman, J.E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364, 732–734 (1993).

    Article  CAS  Google Scholar 

  14. Stamnes, M.A. & Rothman, J.E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73, 999–1005 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Clary, D.O., Griff, I.C. & Rothman, J.E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709–721 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Malhotra, V., Orci, L., Glick, B., Block, M. & Rothman, J.E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54, 221–227 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Söllner T.H. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  PubMed  Google Scholar 

  19. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. McNew, J. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Parlati, F. et al. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci. USA 99, 5424–5429 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gagnon, R. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The body of work has benefited from the critical support of the National Institutes of Health and The Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, J. The machinery and principles of vesicle transport in the cell. Nat Med 8, 1059–1062 (2002). https://doi.org/10.1038/nm770

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nm770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing