Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation

Abstract

Expressed protein ligation (EPL) allows semisynthesis of a target protein with site-specific incorporation of probes or unnatural amino acids at its N or C termini. Here, we describe the protocol that our lab has developed for incorporating fluorotyrosines (FnYs) at residue 356 of the small subunit of Escherichia coli ribonucleotide reductase using EPL. In this procedure, the majority of the protein (residues 1–353 out of 375) is fused to an intein domain and prepared by recombinant expression, yielding the protein in a thioester-activated, truncated form. The remainder of the protein, a 22-mer peptide, is prepared by solid-phase peptide synthesis and contains the FnY at the desired position. Ligation of the 22-mer peptide to the thioester-activated R2 and subsequent purification yield full-length R2 with the FnY at residue 356. The procedure to generate 100 mg quantities of Y356FnY-R2 takes 3–4 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed radical generation pathway in E. coli RNR based on the docking model of Uhlin and Eklund6.
Figure 2: Fluorotyrosine analogues.
Figure 3
Figure 4: Semisynthesis of R2 via EPL17.
Figure 5: Aspartimide formation during synthesis of FnY-22mer.
Figure 6: A typical analytical reverse-phase HPLC profile of pure 3,5-F2Y-22mer.
Figure 7: MonoQ elution profile after ligation of 3,5-F2Y-22mer to MESNA-activated truncated R2 (ref. 18).

Similar content being viewed by others

References

  1. Stubbe, J. & van der Donk, W.A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).

    Article  CAS  Google Scholar 

  2. Jordan, A. & Reichard, P. Ribonucloeotide reductases. Annu. Rev. Biochem. 67, 71–98 (1998).

    Article  CAS  Google Scholar 

  3. Nordlund, P. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 75, 681–706 (2006).

    Article  CAS  Google Scholar 

  4. Stubbe, J. & Riggs-Gelasco, P. Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase. Trends Biochem. Sci. 23, 438–443 (1998).

    Article  CAS  Google Scholar 

  5. Stubbe, J., Nocera, D.G., Yee, C.S. & Chang, M.C. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103, 2167–2201 (2003).

    Article  CAS  Google Scholar 

  6. Uhlin, U. & Eklund, H. Structure of ribonucleotide reductase protein R1. Nature 370, 533–539 (1994).

    Article  CAS  Google Scholar 

  7. Nordlund, P., Sjöberg, B.M. & Eklund, H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345, 593–598 (1990).

    Article  CAS  Google Scholar 

  8. Högbom, M. et al. Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high field EPR and 1.4-Å x-ray data. Proc. Natl. Acad. Sci. USA 100, 3209–3214 (2003).

    Article  Google Scholar 

  9. Ekberg, M., Sahlin, M., Eriksson, M. & Sjöberg, B.M. Two conserved tyrosine residues in protein R1 participate in an intermolecular electron transfer in ribonucleotide reductase. J. Biol. Chem. 271, 20655–20659 (1996).

    Article  CAS  Google Scholar 

  10. Ekberg, M. et al. Preserved catalytic activity in an engineered ribonucleotide reductase R2 protein with a nonphysiological radical transfer pathway. J. Biol. Chem. 273, 21003–21008 (1998).

    Article  CAS  Google Scholar 

  11. Rova, U. et al. Evidence by site-directed mutagenesis supports long-range electron transfer in mouse ribonucleotide reductase. Biochemistry 34, 4267–4275 (1995).

    Article  CAS  Google Scholar 

  12. Rova, U., Adrait, A., Potsch, S., Gräslund, A. & Thelander, L. Evidence by mutagenesis that Tyr370 of the mouse ribonucleotide reductase R2 protein is the connecting link in the intersubunit radical transfer pathway. J. Biol. Chem. 274, 23746–23751 (1999).

    Article  CAS  Google Scholar 

  13. Ekberg, M., Birgander, P. & Sjöberg, B.M. In vivo assay for low-activity mutant forms of Escherichia coli ribonucleotide reductase. J. Bacteriol. 185, 1167–1173 (2003).

    Article  CAS  Google Scholar 

  14. Seyedsayamdost, M.R., Reece, S.Y., Nocera, D.G. & Stubbe, J. Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 1569–1579 (2006).

    Article  CAS  Google Scholar 

  15. Pesavento, R.P. & van der Donk, W.A. Tyrosyl radical cofactors. Adv. Prot. Chem. 58, 317–385 (2001).

    CAS  Google Scholar 

  16. Hoganson, C.W. & Tommos, C. The function and characteristics of tyrosyl radical cofactors. Biochim. Biophys. Acta 1655, 116–122 (2004).

    Article  CAS  Google Scholar 

  17. Yee, C.S., Seyedsayamdost, M.R., Chang, M.C., Nocera, D.G. & Stubbe, J. Generation of the R2 subunit of ribonucleotide reductase by intein chemistry: insertion of 3-nitrotyrosine at residue 356 as a probe of the radical initiation process. Biochemistry 42, 14541–14552 (2003).

    Article  CAS  Google Scholar 

  18. Seyedsayamdost, M.R., Yee, C.S., Reece, S.Y., Nocera, D.G. & Stubbe, J. pH rate profiles of F n Y356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway. J. Am. Chem. Soc. 128, 1562–1568 (2006).

    Article  CAS  Google Scholar 

  19. Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000).

    Article  CAS  Google Scholar 

  20. Cooper, A.A. & Stevens, T.H. Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends Biochem. Sci. 20, 351–356 (1995).

    Article  CAS  Google Scholar 

  21. Kane, P.M. et al. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 250, 651–657 (1990).

    Article  CAS  Google Scholar 

  22. Muralidharan, V. & Muir, T.W. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat. Methods 3, 429–438 (2006).

    Article  CAS  Google Scholar 

  23. Perler, F.B. Protein splicing mechanisms and applications. IUBMB Life 57, 469–476 (2005).

    Article  CAS  Google Scholar 

  24. Chong, S. et al. Protein splicing involving the Saccharomyces cerevisiae VMA intein. J. Biol. Chem. 271, 22159–22168 (1996).

    Article  CAS  Google Scholar 

  25. Perler, F.B., Xu, M.Q. & Paulus, H. Protein splicing and autoproteolysis mechanisms. Curr. Opin. Chem. Biol. 1, 292–299 (1997).

    Article  CAS  Google Scholar 

  26. Chong, S. et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281 (1997).

    Article  CAS  Google Scholar 

  27. Wang, L. & Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Ed. 44, 34–66 (2005).

    Article  CAS  Google Scholar 

  28. Xie, J. & Schultz, P.G. An expanding genetic code. Methods 36, 227–238 (2005).

    Article  CAS  Google Scholar 

  29. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  Google Scholar 

  30. Hofman, R.M. & Muir, T.W. Recent advances in the application of expressed protein ligation to protein engineering. Curr. Opin. Biotechnol. 13, 297–303 (2002).

    Article  Google Scholar 

  31. Pellois, J.P. & Muir, T.W. Semisynthetic proteins in mechanistic studies: using chemistry to go where nature can't. Curr. Opin. Chem. Biol. 10, 487–491 (2006).

    Article  CAS  Google Scholar 

  32. Kim, K. & Cole, P.A. Kinetic analysis of a protein tyrosine kinase reaction transition state in the forward and reverse directions. J. Am. Soc. Chem. 120, 6851–6858 (1998).

    Article  CAS  Google Scholar 

  33. Chen, H., Gollnick, P. & Phillips, R.S. Site-directed mutagenesis of His343 → Ala in Citrobacter freundii tyrosine phenol-lyase. Effects on the kinetic mechanism and rate-determining step. Eur. J. Biochem. 229, 540–549 (1995).

    Article  CAS  Google Scholar 

  34. Phillips, R.S., Ravichandran, K. & Von Tersch, R.L. Synthesis of L-tyrosine from phenol and S-(o-nitrophenyl)-L-cysteine catalysed by tyrosine phenol-lyase. Enzyme Microb. Technol. 11, 80–83 (1989).

    Article  CAS  Google Scholar 

  35. Lapatsanis, L., Milias, G., Froussios, K. & Kolovos, M. Synthesis of N-2,2,2-(trichloroethoxycarbonyl)-L-amino acids and N-(9-fluorenyl-methoxycarbonyl)-L-amino acids involving succinimidoxy anion as a leaving group in amino acid protection. Synthesis 1983, 671–673 (1983).

    Article  Google Scholar 

  36. Mutter, M. et al. Pseudo-prolines (psi Pro) for accessing “inaccessible” peptides. Pept. Res. 8, 145–153 (1995).

    CAS  Google Scholar 

  37. Lauer, J.L., Fields, C.G. & Fields, G.B. Sequence dependence of aspartimide formation during 9-flourenylmethoxycarbonyl solid-phase peptide synthesis. Lett. Pept. Sci. 1, 197–205 (1995).

    Article  CAS  Google Scholar 

  38. Han, Y., Albericio, F. & Barany, G. Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide synthesis. J. Org. Chem. 62, 4307–4312 (1997).

    Article  CAS  Google Scholar 

  39. Xu, R., Ayers, B., Cowburn, D. & Muir, T.W. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc. Natl. Acad. Sci. USA 96, 388–393 (1999).

    Article  CAS  Google Scholar 

  40. Dawson, P.E., Churchill, M.J., Ghadiri, M.R. & Kent, S.B.H. Modulation of reactivity in native chemical ligation through the use of thiol additives. J. Am. Chem. Soc. 119, 4325–4329 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Robert Phillips for the generous gift of the plasmid pTZTPL used for expressing the enzyme TPL, Chia-Hung Wu for helpful comments on the manuscript and the National Institutes of Health for support (GM29595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JoAnne Stubbe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyedsayamdost, M., Yee, C. & Stubbe, J. Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation. Nat Protoc 2, 1225–1235 (2007). https://doi.org/10.1038/nprot.2007.159

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing