Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumor necrosis factor blockade and the risk of viral infection

Abstract

Tumor necrosis factor (TNF) blockers are widely used to treat rheumatoid arthritis and other chronic inflammatory diseases. Many studies have demonstrated an increased risk of opportunistic infections such as tuberculosis and fungal infection in patients treated with TNF blockers, which is thought to be related to the primary role of TNF both in host defense and in the immune response. Little is known, however, about the association between TNF blockade and the development of viral infection. Owing to the critical role of TNF in the control of viral infection, depletion of this cytokine with TNF blockers could facilitate the development or reactivation of viral infection. A number of large observational studies have found an increased risk of herpes zoster in patients receiving TNF blockers for the treatment of rheumatoid arthritis. This Review draws attention to the risk of several viral infections, including HIV, varicella zoster virus, Epstein–Barr virus, cytomegalovirus, and human papillomavirus, in patients receiving TNF-blocking therapy for chronic inflammatory conditions. In addition, implications for clinical practice and possible preventative approaches are discussed.

Key Points

  • Little is known about the risk of viral infections associated with the use of tumor necrosis factor (TNF) blockers

  • Inhibition of TNF might facilitate the development or reactivation of viral infection through several mechanisms

  • Multiple cases of successful TNF-blocking therapy in HIV-infected patients are described in the literature

  • Although uncommon, infection with various viruses such as varicella-zoster virus, Epstein–Barr virus, cytomegalovirus, human papillomavirus and JC virus has been reported following TNF-blocking therapy

  • The effects of TNF blockade on the long-term sequelae of viral infection such as cancer and latent infectious illnesses might not yet be fully appreciated

  • Clinicians should be aware of the current guidelines for adult immunizations with vaccines that can prevent viral infection

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kollias, G., Douni, E., Kassiotis, G. & Kontoyiannis, D. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann. Rheum. Dis. 58, 132–139 (1999).

    Article  Google Scholar 

  2. Furst, D. The risk of infections with biologic therapies for rheumatoid arthritis. Semin. Arthritis Rheum. [doi:10.1016/j.semarthrit.2008.10.002].

  3. Crawford, M. & Curtis, J. Tumor necrosis factor inhibitors and infection complications. Curr. Rheumatol. Rep. 10, 383–389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dixon, W. et al. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 54, 2368–2376 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Wolfe, F., Caplan, L. & Michaud, K. Treatment for rheumatoid arthritis and the risk of hospitalization for pneumonia: associations with prednisone, disease-modifying antirheumatic drugs, and anti-tumor necrosis factor therapy. Arthritis Rheum. 54, 628–634 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Schneeweiss, S. et al. Anti-tumor necrosis factor alpha therapy and the risk of serious bacterial infections in elderly patients with rheumatoid arthritis. Arthritis Rheum. 56, 1754–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Guidotti, L. & Chisari, F. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19 65–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Herbein, G. & Khan, K. Is HIV infection a TNF receptor signalling-driven disease? Trends Immunol. 29, 61–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Carroll, M. & Bond, M. Use of tumor necrosis factor-alpha inhibitors in patients with chronic hepatitis B infection. Semin. Arthritis Rheum. 38, 208–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Domm, S., Cinatl, J. & Mrowietz, U. The impact of treatment with tumour necrosis factor-alpha antagonists on the course of chronic viral infections: a review of the literature. Br. J. Dermatol. 159, 1217–1228 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Bazzoni, F. & Beutler, B. The tumor necrosis factor ligand and receptor families. N. Engl. J. Med. 334, 1717–1725 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Aukrust, P. et al. Tumor necrosis factor (TNF) system levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy: persistent TNF activation is associated with virologic and immunologic treatment failure. J. Infect. Dis. 179, 74–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. de Oliveira Pinto, L., Garcia, S., Lecoeur, H., Rapp, C. & Gougeon, M. Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3. Blood 99, 1666–1675 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Krammer, P. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Badley, A. et al. Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. Exp. Med. 185, 55–64 (1997).

    Article  CAS  Google Scholar 

  17. Aggarwal, B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Bedini, J. et al. Serum levels of beta2-microglobulin, neopterin, TNF-alpha and soluble receptors of TNF-alpha and interleukin-2 in intravenous drug abusers according to HIV-1 status and stage of the HIV-1 infection. Clin. Microbiol. Infect. 4, 4–10 (1998).

    Article  PubMed  Google Scholar 

  19. Poli, G. et al. Transforming growth factor beta suppresses human immunodeficiency virus expression and replication in infected cells of the monocyte/macrophage lineage. Exp. Med. 173, 589–597 (1991).

    Article  CAS  Google Scholar 

  20. Walker, R. et al. Inhibition of immunoreactive tumor necrosis factor-alpha by a chimeric antibody in patients infected with human immunodeficiency virus type 1. J. Infect. Dis. 174, 63–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Aboulafia, D., Bundow, D., Wilske, K. & Ochs, U. Etanercept for the treatment of human immunodeficiency virus-associated psoriatic arthritis. Mayo Clin. Proc. 75, 1093–1098 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Bartke, U. et al. Human immunodeficiency virus-associated psoriasis and psoriatic arthritis treated with infliximab. Br. J. Dermatol. 150, 784–786 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Gaylis, N. Infliximab in the treatment of an HIV positive patient with Reiter's syndrome. J. Rheumatol. 30, 407–411 (2003).

    PubMed  Google Scholar 

  24. Beltran, B. et al. Safe and effective application of anti-TNF-alpha in a patient infected with HIV and concomitant Crohn's disease. Gut 55, 1670–1671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Filippi, J. et al. Infliximab and human immunodeficiency virus infection: Viral load reduction and CD4+ T-cell loss related to apoptosis. Arch. Intern. Med. 166, 1783–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Wallis, R. S. et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS 18, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kaur, P. P., Chan, V. C. & Berney, S. N. Successful etanercept use in an HIV-positive patient with rheumatoid arthritis. J. Clin. Rheumatol. 13, 79–80 (2007).

    Article  Google Scholar 

  28. Linardaki, G. K., Katsarou, O., Ioannidou, P., Karafoulidou, A. & Boki, K. Effective etanercept treatment for psoriatic arthritis complicating concomitant human immunodeficiency virus and hepatitis C virus infection. J. Rheumatol. 34, 1353–1355 (2007).

    CAS  PubMed  Google Scholar 

  29. Sellam, J. et al. Use of infliximab to treat psoriatic arthritis in HIV-positive patients. Joint Bone Spine 74, 197–200 (2007).

    Article  PubMed  Google Scholar 

  30. Cepeda, E., Williams, F., Ishimori, M., Weisman, M. & Reveille, J. The use of anti-tumour necrosis factor therapy in HIV-positive individuals with rheumatic disease. Ann. Rheum. Dis. 67, 710–712 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Mikhail, M., Weinberg, J. M. & Smith, B. L. Successful treatment with etanercept of von Zumbusch pustular psoriasis in a patient with human immunodeficiency virus. Arch. Dermatol. 144, 453–456 (2008).

    Article  PubMed  Google Scholar 

  32. Shahbazian, H. & Ehsanpour, A. An outbreak of chickenpox in adult renal transplant recipients. Exp. Clin. Transplant. 5, 604–606 (2007).

    PubMed  Google Scholar 

  33. Dworkin, R. & Schmader, K. Epidemiology and natural history of herpes zoster and postherpetic neuralgia (eds Watson, C. & Gershon, A.) (Elsevier Press, New York, 2001).

    Google Scholar 

  34. Schmader, K., Gnann, J. J. & Watson, C. The epidemiological, clinical, and pathological rationale for the herpes zoster vaccine. J. Infect. Dis. 197, S207–S215 (2008).

    Article  PubMed  Google Scholar 

  35. Sampathkumar, P., Drage, L. & Martin, D. Herpes zoster (shingles) and postherpetic neuralgia. Mayo Clin. Proc. 84, 274–280 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan, H. & Goh, C. Viral infections affecting the skin in organ transplant recipients: epidemiology and current management strategies. Am. J. Clin. Dermatol. 7, 13–29 (2006).

    Article  PubMed  Google Scholar 

  37. Smitten, A. L. et al. The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom. Arthritis Rheum. 57, 1431–1438 (2007).

    Article  PubMed  Google Scholar 

  38. Lee, P. P. W., Lee, T.-L., Ho, M. H.-K., Wong, W. H. S. & Lau, Y.-L. Herpes zoster in juvenile-onset systemic lupus erythematosus: incidence, clinical characteristics and risk factors. Pediatr. Infect. Dis. J. 25, 728–732 (2006).

    Article  PubMed  Google Scholar 

  39. Ishikawa, O., Abe, M. & Miyachi, Y. Herpes zoster in Japanese patients with systemic lupus erythematosus. Clin. Exp. Dermatol. 24, 327–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Wolfe, F., Michaud, K. & Chakravarty, E. Rates and predictors of herpes zoster in patients with rheumatoid arthritis and non-inflammatory musculoskeletal disorders. Rheumatology (Oxford) 45, 1370–1375 (2006).

    Article  CAS  Google Scholar 

  41. Strangfeld, A. et al. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti-TNF-alpha agents. JAMA 301, 737–744 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Baumgart, D. & Dignass, A. Shingles following infliximab infusion. Ann. Rheum. Dis. 61, 661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kinder, A., Stephens, S., Mortimer, N. & Sheldon, P. Severe herpes zoster after infliximab infusion. Postgrad. Med. J. 80, 26 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, H. H. et al. Cutaneous side-effects in patients with rheumatic diseases during application of tumour necrosis factor-alpha antagonists. British J. Dermatol. 156, 486–491 (2007).

    Article  CAS  Google Scholar 

  45. Leung, V. S., Nguyen, M. T. & Bush, T. M. Disseminated primary varicella after initiation of infliximab for Crohn's disease. Am. J. Gastroenterol. 99, 2503–2504 (2004).

    Article  PubMed  Google Scholar 

  46. Balato, N., Gaudiello, F., Balato, A. & Ayala, F. Development of primary varicella infection during infliximab treatment for psoriasis. J. Am. Acad. Dermatol. 60, 709–710 (2009).

    Article  PubMed  Google Scholar 

  47. Becart, S. & Segaert, S. Recurrent varicella in an adult psoriasis patient treated with etanercept. Dermatology 217, 260–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Choi, H.-J., Kim, M.-Y., Kim, H. O. & Park, Y. M. An atypical varicella exanthem associated with the use of infliximab. Int. J. Dermatol. 45, 999–1000 (2006).

    Article  PubMed  Google Scholar 

  49. Seiderer, J., Goke, B. & Ochsenkuhn, T. Safety aspects of infliximab in inflammatory bowel disease patients. A retrospective cohort study in 100 patients of a German University Hospital. Digestion 70, 3–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Vonkeman, H., ten Napel, C., Rasker, H. & van de Laar, M. Disseminated primary varicella infection during infliximab treatment. J. Rheumatol. 31, 2517–2518 (2004).

    PubMed  Google Scholar 

  51. Wendling, D., Streit, G., Toussirot, E. & Prati, C. Herpes zoster in patients taking TNFalpha antagonists for chronic inflammatory joint disease. Joint Bone Spine 75, 540–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Tresch, S., Trüeb, R., Kamarachev, J., French, L. & Hofbauer, G. Disseminated herpes zoster mimicking rheumatoid vasculitis in a rheumatoid arthritis patient on etanercept. Dermatology 219, 347–349 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Greenberg, J. et al. Association of methotrexate and TNF antagonists with risk of infection outcomes including opportunistic infections in the CORRONA registry. Ann. Rheum. Dis. [doi:10.1136/ard.2008.089276].

  54. McDonald, J. et al. Herpes zoster risk factors in a national cohort of veterans with rheumatoid arthritis. Clin. Infect. Dis. 48, 1364–1371 (2009).

    Article  PubMed  Google Scholar 

  55. Lee, D., Kim, H., Song, Y. & Cho, K. Development of varicella during adalimumab therapy. J. Eur. Acad. Dermatol. Venereol. 21, 687–688 (2007).

    CAS  PubMed  Google Scholar 

  56. Centers for Diseases Control and Prevention. Epstein–Barr virus and infectious mononucleosis http://www.cdc.gov/ncidod/diseases/ebv.htm (2006).

  57. Toussirot, E. & Roudier, J. Epstein–Barr virus in autoimmune diseases. Best Pract. Res. Clin. Rheumatol. 22, 883–896 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Alspaugh, M., Henle, G., Lennette, E. & Henle, W. Elevated levels of antibodies to Epstein–Barr virus antigens in sera and synovial fluids of patients with rheumatoid arthritis. J. Clin. Invest. 67, 1134–1140 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balandraud, N. et al. Long-term treatment with methotrexate or tumor necrosis factor alpha inhibitors does not increase Epstein–Barr virus load in patients with rheumatoid arthritis. Arthritis Rheum. 57, 762–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Sari, I. et al. Atypical infectious mononucleosis in a patient receiving tumor necrosis factor alpha inhibitory treatment. Rheumatol. Int. 29, 825–826 (2009).

    Article  PubMed  Google Scholar 

  61. Park, S., Kim, C., Kim, J. & Choe, J. Spontaneous regression of EBV-associated diffuse lymphoproliferative disease in a patient with rheumatoid arthritis after discontinuation of etanercept treatment. Rheumatol. Int. 28, 475–477 (2008).

    Article  PubMed  Google Scholar 

  62. Komatsuda, A., Wakui, H., Nimura, T. & Sawada, K. Reversible infliximab-related lymphoproliferative disorder associated with Epstein–Barr virus in a patient with rheumatoid arthritis. Mod. Rheumatol. 18, 315–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Losco, A. et al. Epstein–Barr virus-associated lymphoma in Crohn's disease. Inflamm. Bowel Dis. 10, 425–429 (2004).

    Article  PubMed  Google Scholar 

  64. Mocarski, E. & Courcelle, C. in Fields's virology (eds Knipe, D. & Howley, P.) (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  65. Haerter, G. et al. Cytomegalovirus retinitis in a patient treated with anti-tumor necrosis factor alpha antibody therapy for rheumatoid arthritis. Clin. Infect. Dis. 39, e88–e94 (2004).

    Article  PubMed  Google Scholar 

  66. Petersen, B. & Lorentzen, H. Cytomegalovirus complicating biological immunosuppressive therapy in two patients with psoriasis receiving treatment with etanercept or efalizumab. Acta Derm. Venereol. 88, 523–524 (2008).

    Article  PubMed  Google Scholar 

  67. Pontikaki, I. et al. Side effects of anti-TNFalpha therapy in juvenile idiopathic arthritis [Italian]. Reumatismo 58, 31–38 (2006).

    PubMed  Google Scholar 

  68. Sari, I. et al. Cytomegalovirus colitis in a patient with Behcet's disease receiving tumor necrosis factor alpha inhibitory treatment. World J. Gastroenterol. 14, 2912–2914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Moore, P. & Chang, Y. Kaposi's sarcoma (KS), KS-associated herpesvirus, and the criteria for causality in the age of molecular biology. Am. J. Epidemiol. 147, 217–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Antman, K. & Chang, Y. Kaposi's sarcoma. N. Engl. J. Med. 342, 1027–1038 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Casoli, P. & Tumiati, B. Rheumatoid arthritis, corticosteroid therapy and Kaposi's sarcoma: a coincidence? A case and review of literature. Clin. Rheumatol. 11, 432–435 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Louthrenoo, W., Kasitanon, N., Mahanuphab, P., Bhoopat, L. & Thongprasert, S. Kaposi's sarcoma in rheumatic diseases. Semin. Arthritis Rheum. 32, 326–333 (2003).

    PubMed  Google Scholar 

  74. Kuttikat, A., Joshi, A., Saeed, I. & Chakravarty, K. Kaposi sarcoma in a patient with giant cell arteritis. Dermatol. Online J. 12, 16 (2006).

    PubMed  Google Scholar 

  75. Soria, C. et al. Kaposi's sarcoma in a patient with temporal arteritis treated with corticosteroid. J. Am. Acad. Dermatol. 24, 1027–1028 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Cohen, C. D., Horster, S., Sander, C. A. & Bogner, J. R. Kaposi's sarcoma associated with tumour necrosis factor alpha neutralising therapy. Ann. Rheum. Dis. 62, 684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lavagna, A. et al. Infliximab and the risk of latent viruses reactivation in active Crohn's disease. Inflamm. Bowel Dis. 13, 896–902 (2007).

    Article  PubMed  Google Scholar 

  78. Markowitz, L. et al. Quadrivalent human papillomavirus vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 56, 1–24 (2007).

    PubMed  Google Scholar 

  79. Handisurya, A., Schellenbacher, C. & Kirnbauer, R. Diseases caused by human papillomaviruses (HPV). J. Dtsch. Dermatol. Ges. 7, 453–466 (2009).

    PubMed  Google Scholar 

  80. Einstein, M. et al. Clinician's guide to human papillomavirus immunology: knowns and unknowns. Lancet Infect. Dis. 9, 347–356 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Strickler, H. et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J. Natl Cancer Inst. 97, 577–586 (2005).

    Article  PubMed  Google Scholar 

  82. Garcia-Pineres, A. et al. Persistent human papillomavirus infection is associated with a generalized decrease in immune responsiveness in older women. Cancer Res. 66, 11070–11076 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Savani, B. et al. Increased risk of cervical dysplasia in long-term survivors of allogeneic stem cell transplantation—implications for screening and HPV vaccination. Biol. Blood Marrow Transplant. 14, 1072–1075 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Veroux, M. et al. Surveillance of human papilloma virus infection and cervical cancer in kidney transplant recipients: preliminary data. Transplant. Proc. 41, 1191–1194 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Malouf, M. A. et al. Sexual health issues after lung transplantation: importance of cervical screening. J. Heart Lung Transplant. 23, 894–897 (2004).

    Article  PubMed  Google Scholar 

  86. Porreco, R., Penn, I., Droegemueller, W., Greer, B. & Makowski, E. Gynecologic malignancies in immunosuppressed organ homograft recipients. Obstet. Gynecol. 45, 359–364 (1975).

    CAS  PubMed  Google Scholar 

  87. Kane, S., Khatibi, B. & Reddy, D. Higher incidence of abnormal Pap. smears in women with inflammatory bowel disease. Am. J. Gastroenterol. 103, 631–636 (2008).

    Article  PubMed  Google Scholar 

  88. Somasekar, A. & Alcolado, R. Genital condylomata in a patient receiving infliximab for Crohn's disease. Postgrad. Med. J. 80, 358–359 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cursiefen, C. et al. Multiple bilateral eyelid molluscum contagiosum lesions associated with TNFalpha-antibody and methotrexate therapy. Am. J. Ophthalmol. 134, 270–271 (2002).

    Article  PubMed  Google Scholar 

  90. Antoniou, C., Kosmadaki, M. G., Stratigos, A. J. & Katsambas, A. D. Genital HPV lesions and molluscum contagiosum occurring in patients receiving anti-TNF-alpha therapy. Dermatology 216, 364–365 (2008).

    Article  PubMed  Google Scholar 

  91. Adams, D. R., Zaenglein, A. L. & Hershey, M. S. Etanercept and warts. J. Drugs Dermatol. 3, 601 (2004).

    PubMed  Google Scholar 

  92. Gur, I. The epidemiology of Molluscum contagiosum in HIV-seropositive patients: a unique entity or insignificant finding? Int. J. STD AIDS 19, 503–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Weber, T. Progressive multifocal leukoencephalopathy. Neurol. Clin. 26, 833–854 (2008).

    Article  PubMed  Google Scholar 

  94. Padgett, B., Walker, D., ZuRhein, G., Eckroade, R. & Dessel, B. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1, 1257–1260 (1971).

    Article  CAS  PubMed  Google Scholar 

  95. TYSABRI Update. Biogen Idec [online], (2009).

  96. Van Assche, G. V. R. M. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Calabrese, L. & Molloy, E. Progressive multifocal leucoencephalopathy in the rheumatic diseases: assessing the risks of biological immunosuppressive therapies. Ann. Rheum. Dis. 67 (Suppl. 3), iii64–iii65 (2008).

    PubMed  Google Scholar 

  98. Sterry, W. et al. Immunosuppressive therapy in dermatology and PML. JDDG 7, 5 (2009).

    PubMed  Google Scholar 

  99. Boren, E. J., Cheema, G. S., Naguwa, S. M., Ansari, A. A. & Gershwin, M. The emergence of progressive multifocal leukoencephalopathy (PML) in rheumatic diseases. J. Autoimmun. 30, 90–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Bonavita, S. et al. Infratentorial progressive multifocal leukoencephalopathy in a patient treated with fludarabine and rituximab. Neurol. Sci. 29, 37–39 (2008).

    Article  PubMed  Google Scholar 

  101. Fidder, H. et al. Long-term safety of infliximab for the treatment of inflammatory bowel disease: a single-centre cohort study. Gut 58, 501–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Yamamoto, M. et al. Leukoencephalopathy during administration of etanercept for refractory rheumatoid arthritis. Mod. Rheumatol. 17, 72–74 (2007).

    Article  PubMed  Google Scholar 

  103. Koralnik, I., Boden, D., Mai, V., Lord, C. & Letvin, N. JC virus DNA load in patients with and without progressive multifocal leukoencephalopathy. Neurology 52, 253–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Weber, T. Cerebrospinal fluid analysis for the diagnosis of human immunodeficiency virus-related neurologic diseases. Semin. Neurol. 19, 223–233 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Mohan, N. et al. Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum. 44, 2862–2869 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Jarand, J., Zochodne, D., Martin, L. & Voll, C. Neurological complications of infliximab. J. Rheumatol. 33, 1018–1020 (2006).

    PubMed  Google Scholar 

  107. Smith, D. & Letendre, S. Viral pneumonia as a serious complication of etanercept therapy. Ann. Intern. Med. 136, 174 (2002).

    Article  PubMed  Google Scholar 

  108. Ahmad, N. M., Ahmad, K. M. & Younus, F. Severe adenovirus pneumonia (AVP) following infliximab infusion for the treatment of Crohn's disease. J. Infect. 54, e29–e32 (2007).

    Article  PubMed  Google Scholar 

  109. Kang, M.-J. et al. Adenoviral pneumonia during etanercept treatment in a patient with rheumatoid arthritis. Korean J. Intern. Med. 22, 63–66 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Saag, K. et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 59, 762–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Centers for Disease Control and Prevention. Recommendations of the Advisory Committee on Immunization Practices (ACIP): Use of vaccines and immune globulins in persons with altered immunocompetence. MMWR 42, 1–18 (1993).

  112. Harpaz, R., Ortega-Sanchez, I. & Seward, J. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices. MMWR 57, 1–30 (2008).

    PubMed  Google Scholar 

  113. Cush, J., Calabrese, L. & Kavanaugh, A. Herpes zoster (shingles) vaccine guidelines for immunosuppressed patients. American College of Rheumatology Hotline http://www.rheumatology.org/publications/hotline/2008_08_01_shingles.asp (2008).

    Google Scholar 

  114. Muñoz, N. et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial. Lancet 373, 1949–1957 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Kahn, J. HPV vaccination for the prevention of cervical intraepithelial neoplasia. N. Engl. J. Med. 361, 271–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Avery, R. & Michaels, M. Update on immunizations in solid organ transplant recipients: what clinicians need to know. Am. J. Transplant. 8, 9–14 (2007).

    Article  PubMed  Google Scholar 

  117. Centers for Disease Control and Prevention. Recommended adult immunization schedule—United States, 2009. MMWR 57, Q1–Q4 (2009).

  118. Elkayam, O. et al. The effect of infliximab and timing of vaccination on the humoral response to influenza vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin. Arthritis Rheum. [doi: 10.1016/j.semarthrit.2008.12.002].

  119. Brezinschek, H.-P., Hofstaetter, T., Leeb, B. F., Haindl, P. & Graninger, W. B. Immunization of patients with rheumatoid arthritis with antitumor necrosis factor alpha therapy and methotrexate. Curr. Opin. Rheumatol. 20, 295–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Papadakis, K. et al. Outcome of cytomegalovirus infections in patients with inflammatory bowel disease. Am. J. Gastroenterol. 96, 2137–2142 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Helbling, D., Breitbach, T. H. & Krause, M. Disseminated cytomegalovirus infection in Crohn's disease following anti-tumour necrosis factor therapy. Eur. J. Gastroenterol. Hepatol. 14, 1393–1395 (2002).

    Article  PubMed  Google Scholar 

  122. Actis, G., Bruno, M., Pinna-Pintor, M., Rossini, F. & Rizzetto, M. Infliximab for treatment of steroid-refractory ulcerative colitis. Digest. Liver Dis. 34, 631–634 (2002).

    Article  CAS  Google Scholar 

  123. Mizuta, M. & Schuster, M. Cytomegalovirus hepatitis associated with use of anti-tumor necrosis factor-alpha antibody. Clin. Infect. Dis. 40, 1071–1072 (2005).

    Article  PubMed  Google Scholar 

  124. Kohara, M. M. & Blum, R. N. Cytomegalovirus ileitis and hemophagocytic syndrome associated with use of anti-tumor necrosis factor-alpha antibody. Clin. Infect. Dis. 42, 733–734 (2006).

    Article  PubMed  Google Scholar 

  125. D'Ovidio, V. et al. Cytomegalovirus infection in inflammatory bowel disease patients undergoing anti-TNFalpha therapy. J. Clin. Virol. 43, 180–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Centers for Disease Control and Prevention. Vaccines and Immunization. http://www.cdc.gov/vaccines/recs/schedules/default.htm (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seo Young Kim.

Ethics declarations

Competing interests

D. H. Solomon has received grants/research support from Amgen and Abbott. S. Y. Kim declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Solomon, D. Tumor necrosis factor blockade and the risk of viral infection. Nat Rev Rheumatol 6, 165–174 (2010). https://doi.org/10.1038/nrrheum.2009.279

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing