Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial proteomic profiling elucidates immune determinants of neoadjuvant chemo-immunotherapy in esophageal squamous cell carcinoma

Abstract

Esophageal squamous cell carcinoma (ESCC) presents significant clinical and therapeutic challenges due to its aggressive nature and generally poor prognosis. We initiated a Phase II clinical trial (ChiCTR1900027160) to assess the efficacy of a pioneering neoadjuvant chemo-immunotherapy regimen comprising programmed death-1 (PD-1) blockade (Toripalimab), nanoparticle albumin-bound paclitaxel (nab-paclitaxel), and the oral fluoropyrimidine derivative S-1, in patients with locally advanced ESCC. This study uniquely integrates clinical outcomes with advanced spatial proteomic profiling using Imaging Mass Cytometry (IMC) to elucidate the dynamics within the tumor microenvironment (TME), focusing on the mechanistic interplay of resistance and response. Sixty patients participated, receiving the combination therapy prior to surgical resection. Our findings demonstrated a major pathological response (MPR) in 62% of patients and a pathological complete response (pCR) in 29%. The IMC analysis provided a detailed regional assessment, revealing that the spatial arrangement of immune cells, particularly CD8+ T cells and B cells within tertiary lymphoid structures (TLS), and S100A9+ inflammatory macrophages in fibrotic regions are predictive of therapeutic outcomes. Employing machine learning approaches, such as support vector machine (SVM) and random forest (RF) analysis, we identified critical spatial features linked to drug resistance and developed predictive models for drug response, achieving an area under the curve (AUC) of 97%. These insights underscore the vital role of integrating spatial proteomics into clinical trials to dissect TME dynamics thoroughly, paving the way for personalized and precise cancer treatment strategies in ESCC. This holistic approach not only enhances our understanding of the mechanistic basis behind drug resistance but also sets a robust foundation for optimizing therapeutic interventions in ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neoadjuvant chemo-immunotherapy in esophageal squamous cell carcinoma clinical trial.
Fig. 2: Single-cell resolution of the ESCC microenvironment by IMC reveals spatial features related to neoadjuvant therapy response.
Fig. 3: Spatial and functional characteristics of TLS and their milieu in response to chemo-immunotherapy.
Fig. 4: Spatial and functional analysis of TME regions in response to therapy.
Fig. 5: Analysis of cell–cell interactions and their correlation with clinical outcomes.
Fig. 6: Analysis of spatial features for predicting treatment response using machine learning.

Similar content being viewed by others

Data availability

The IMC data can be accessed via OMIX/OMIX006370.

Code availability

Please note that the IMC analysis in this study does not involve the original code. To access the original codes used, please refer to the “Methods” section and the respective references provided. If you require any additional information to reanalyze the data presented in this paper, please contact the corresponding author directly.

References

  1. Uhlenhopp DJ, Then EO, Sunkara T, Gaduputi V. Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin J Gastroenterol. 2020;13:1010–21.

    Article  PubMed  Google Scholar 

  2. Liu CQ, Ma YL, Qin Q, Wang PH, Luo Y, Xu PF, et al. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thorac Cancer. 2023;14:3–11.

    Article  PubMed  Google Scholar 

  3. Li J, Xu J, Zheng Y, Gao Y, He S, Li H, et al. Esophageal cancer: epidemiology, risk factors and screening. Chin J Cancer Res. 2021;33:535–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deybasso HA, Roba KT, Nega B, Belachew T. Dietary and environmental determinants of oesophageal cancer in arsi zone, oromia, central ethiopia: a case-control study. Cancer Manag Res. 2021;13:2071–82.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46:1097–102.

    Article  CAS  PubMed  Google Scholar 

  6. Ajani JA, D’Amico TA, Bentrem DJ, Cooke D, Corvera C, Das P, et al. Esophageal and esophagogastric junction cancers, version 2.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2023;21:393–422.

    Article  PubMed  Google Scholar 

  7. Kitagawa Y, Uno T, Oyama T, Kato K, Kato H, Kawakubo H, et al. Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: part 1. Esophagus. 2019;16:1–24.

    Article  PubMed  Google Scholar 

  8. Lordick F, Hölscher AH, Haustermans K, Wittekind C. Multimodal treatment of esophageal cancer. Langenbecks Arch Surg. 2013;398:177–87.

    Article  PubMed  Google Scholar 

  9. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  10. Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367.

  11. Jiang Y, Chen M, Nie H, Yuan Y. Pd-1 and pd-l1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother. 2019;15:1111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Liu R, Li C, Song Y, Liu G, Huang Q, et al. Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator. Am J Cancer Res. 2021;11:3445–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Saif MW, Syrigos KN, Katirtzoglou NA. S-1: a promising new oral fluoropyrimidine derivative. Expert Opin Investig Drugs. 2009;18:335–48.

    Article  CAS  PubMed  Google Scholar 

  14. Kozai H, Ogino H, Mitsuhashi A, Nguyen NT, Tsukazaki Y, Yabuki Y, et al. Potential of fluoropyrimidine to be an immunologically optimal partner of immune checkpoint inhibitors through inducing immunogenic cell death for thoracic malignancies. Thorac Cancer. 2024;15:369–78.

    Article  CAS  PubMed  Google Scholar 

  15. Zou G, Anwar J, Pizzi MP, Abdelhakeem A. Unraveling the intricacies of neoadjuvant immune checkpoint blockade in esophageal squamous cell carcinoma: a comprehensive single-cell perspective. J Thorac Dis. 2024;16:826–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pei L, Liu Y, Liu L, Gao S, Gao X, Feng Y, et al. Roles of cancer-associated fibroblasts (cafs) in anti- pd-1/pd-l1 immunotherapy for solid cancers. Mol Cancer. 2023;22:29.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, et al. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis. 2023;14:586.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Martino JS, Akhter T, Bravo-Cordero JJ. Remodeling the ECM: implications for metastasis and tumor dormancy. Cancers. 2021;13.

  19. Che G, Yin J, Wang W, Luo Y, Chen Y, Yu X, et al. Circumventing drug resistance in gastric cancer: a spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics. Drug Resist Updat. 2024;74:101080.

    Article  CAS  PubMed  Google Scholar 

  20. Bao X, Li Q, Chen D, Dai X, Liu C, Tian W, et al. A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer. Cell Rep. Med. 2024;5:101399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiessling P, Kuppe C. Spatial multi-omics: novel tools to study the complexity of cardiovascular diseases. Genome Med. 2024;16:14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baharlou H, Canete NP, Cunningham AL, Harman AN, Patrick E. Mass cytometry imaging for the study of human diseases-applications and data analysis strategies. Front Immunol. 2019;10:2657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji Y, Sun D, Zhao Y, Tang J, Tang J, Song J, et al. A high-throughput mass cytometry barcoding platform recapitulating the immune features for HCC detection. Nano Today. 2023;52:101940.

    Article  CAS  Google Scholar 

  24. Rörby E, Adolfsson J, Hultin E, Gustafsson T, Lotfi K, Cammenga J, et al. Multiplexed single‐cell mass cytometry reveals distinct inhibitory effects on intracellular phosphoproteins by midostaurin in combination with chemotherapy in AML cells. Exp Hematol Oncol. 2021;10:7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Du J, Zhang J, Wang L, Wang X, Zhao Y, Lu J, et al. Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis. Nat Commun. 2023;14:3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheng J, Zhang J, Wang L, Tano V, Tang J, Wang X, et al. Topological analysis of hepatocellular carcinoma tumour microenvironment based on imaging mass cytometry reveals cellular neighbourhood regulated reversely by macrophages with different ontogeny. Gut. 2022;71:1176–91.

    Article  CAS  PubMed  Google Scholar 

  27. Shao W, Shi H, Liu J, Zuo Y, Sun L, Xia T, et al. Multi-instance multi-task learning for joint clinical outcome and genomic profile predictions from the histopathological images. IEEE Trans Med Imaging. 2024;43:2266–78.

    Article  PubMed  Google Scholar 

  28. Shao W, Zuo Y, Shi Y, Wu Y, Tang J, Zhao J, et al. Characterizing the survival-associated interactions between tumor-infiltrating lymphocytes and tumors from pathological images and multi-omics data. IEEE Trans Med Imaging. 2023;42:3025–35.

    Article  PubMed  Google Scholar 

  29. Shao W, Liu J, Zuo Y, Qi S, Hong H, Sheng J, et al. Fam3l: feature-aware multi-modal metric learning for integrative survival analysis of human cancers. IEEE Trans Med Imaging. 2023;42:2552–65.

    Article  PubMed  Google Scholar 

  30. Hamamoto R, Koyama T, Kouno N, Yasuda T, Yui S, Sudo K. et al. Introducing AI to the molecular tumor board: One direction toward the establishment of precision medicine using large-scale cancer clinical and biological information. Exp Hematol Oncology. 2022;11:82.

    Article  Google Scholar 

  31. Health Commission Of The People’s Republic Of China N. National guidelines for diagnosis and treatment of esophageal carcinoma 2022 in China (English version). Chin J Cancer Res. 2022;34:309–34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bottlaender L, Amini-Adle M, Maucort-Boulch D, Robinson P, Thomas L, Dalle S. Cutaneous adverse events: a predictor of tumour response under anti-pd-1 therapy for metastatic melanoma, a cohort analysis of 189 patients. J Eur Acad Dermatol Venereol. 2020;34:2096–105.

    Article  CAS  PubMed  Google Scholar 

  33. Chaw S, Majeed AA, Dalley A, Chan A, Stein S, Farah C. Epithelial to mesenchymal transition (EMT) biomarkers–e-cadherin, beta-catenin, APC and vimentin–in oral squamous cell carcinogenesis and transformation. Oral Oncol. 2012;48:997–1006.

    Article  CAS  PubMed  Google Scholar 

  34. Metz R, Smith C, DuHadaway JB, Chandler P, Baban B, Merlo LM, et al. Ido2 is critical for ido1-mediated t-cell regulation and exerts a non-redundant function in inflammation. Int Immunol. 2014;26:357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100a8/a9 in inflammation. Front Immunol. 2018;9:1298.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paver EC, Cooper WA, Colebatch AJ, Ferguson PM, Hill SK, Lum T, et al. Programmed death ligand-1 (pd-l1) as a predictive marker for immunotherapy in solid tumours: a guide to immunohistochemistry implementation and interpretation. Pathology. 2021;53:141–56.

    Article  CAS  PubMed  Google Scholar 

  37. Yang M, Lu J, Zhang G, Wang Y, He M, Xu Q, et al. Cxcl13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J Immunother Cancer. 2021;9.

  38. Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. Targeting cd38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res. 2017;23:4290–4300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Revel M, Sautès-Fridman C, Fridman W-H, Roumenina LT. C1q+ macrophages: passengers or drivers of cancer progression. Trends Cancer. 2022;8:517–26.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao YX, Song JY, Bao XW, Zhang JL, Wu JC, Wang LY, et al. Single-cell RNA sequencing-guided fate-mapping toolkit delineates the contribution of yolk sac erythro-myeloid progenitors. Cell Rep. 2023;42:113364.

    Article  CAS  PubMed  Google Scholar 

  41. Guo G, Sun L, Yang L, Xu H. Ido1 depletion induces an anti-inflammatory response in macrophages in mice with chronic viral myocarditis. Cell Cycle. 2019;18:2598–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bill R, Wirapati P, Messemaker M, Roh W, Zitti B, Duval F, et al. Cxcl9: Spp1 macrophage polarity identifies a network of cellular programs that control human cancers. Science. 2023;381:515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol. 2021;10:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang C, Chen L, Fu D, Liu W, Puri A, Kellis M, et al. Antigen presenting cells in cancer immunity and mediation of immune checkpoint blockade. Clin Exp Metastasis. 2024:1–17.

  45. Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol. 2023;13:1063711.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hoch T, Schulz D, Eling N, Gómez JM, Levesque MP, Bodenmiller B. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci Immunol. 2022;7:eabk1692.

    Article  CAS  PubMed  Google Scholar 

  47. Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol. 2023;13:1039260.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hou J, Xie S, Gao J, Jiang T, Zhu E, Yang X, et al. NK cell transfer overcomes resistance to PD-(l)1 therapy in aged mice. Exp Hematol Oncol 2024;13:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mentlik James A, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;4:481.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Risom T, Glass DR, Averbukh I, Liu CC, Baranski A, Kagel A, et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell. 2022;185:299–310.e218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Speiser JL, Miller ME, Tooze J, Ip E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl. 2019;134:93–101.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dobson AJ, Barnett AG. An introduction to generalized linear models. 3rd ed. Boca Raton, FL: Chapman and Hall/CRC; 2018.

  53. Zhang Z, Zhang Z. Artificial Neural Network. In: Multivariate Time Series Analysis in Climate and Environmental Research. Cham, Switzerland: Springer; 2018. pp. 1–35.

  54. Latha R, Venkatachalam K, Al-Amri JF, Abouhawwash M. Shrinkage linear with quadratic Gaussian discriminant analysis for big data classification. Intell Autom Soft Comput. 2022;34:1803–1818.

    Article  Google Scholar 

  55. Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nat Commun. 2020;11:6268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lazăr DC, Avram MF, Romoșan I, Cornianu M, Tăban S, Goldiș A. Prognostic significance of tumor immune microenvironment and immunotherapy: novel insights and future perspectives in gastric cancer. World J Gastroenterol. 2018;24:3583.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tang J, Sheng J, Zhang Q, Ji Y, Wang X, Zhang J, et al. Runx3-overexpression cooperates with ex vivo akt inhibition to generate receptor-engineered t cells with better persistence, tumor-residency, and antitumor ability. J Immunother Cancer. 2023;11.

  58. Sheng J, Wu J, Yin X, Sun Z, Wang X, Zhang J, et al. Synergetic treatment of oxygen microcapsules and lenvatinib for enhanced therapy of HCC by alleviating hypoxia condition and activating anti-tumor immunity. Chin Chem Lett. 2023;34:107738.

    Article  CAS  Google Scholar 

  59. Ling Y, Zhong J, Weng Z, Lin G, Liu C, Pan C, et al. The prognostic value and molecular properties of tertiary lymphoid structures in oesophageal squamous cell carcinoma. Clin Transl Med. 2022;12:e1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang T-C, Liang C-W, Li Y-I, Guo J-C, Lin C-C, Lee J-M, et al. The prognostic role of tertiary lymphoid structure (TLS) in locally advanced esophageal squamous cell carcinoma (ESCC). Cancer Res. 2023;83:2211–2211.

    Article  Google Scholar 

  61. Li R, Huang X, Yang W, Wang J, Liang Y, Zhang T, et al. Tertiary lymphoid structures favor outcome in resected esophageal squamous cell carcinoma. J Pathol: Clin Res. 2022;8:422–35.

    CAS  PubMed  Google Scholar 

  62. Zhang T, Ren Y, Yang P, Wang J, Zhou H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis. 2022;13:897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol. 2024;17:44.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu Y, Zugazagoitia J, Ahmed FS, Henick BS, Gettinger SN, Herbst RS, et al. Immune cell PD-l1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clin Cancer Res. 2020;26:970–7.

    Article  CAS  PubMed  Google Scholar 

  65. Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, et al. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol. 2022;13:1018962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen Y, Kim J, Yang S, Wang H, Wu CJ, Sugimoto H, et al. Type I collagen deletion in αSMA(+) myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell. 2021;39:548–565.e546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10:1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qi J, Sun H, Zhang Y, Wang Z, Xun Z, Li Z, et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat Commun. 2022;13:1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology. 2008;124:13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xin S, Liu X, Li Z, Sun X, Wang R, Zhang Z, et al. ScRNA-seq revealed an immunosuppression state and tumor microenvironment heterogeneity related to lymph node metastasis in prostate cancer. Experimental Hematology &. Exp. Hematol Oncol. 2023;12:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bao X, Li Q, Chen J, Chen D, Ye C, Dai X, et al. Molecular subgroups of intrahepatic cholangiocarcinoma discovered by single-cell RNA sequencing–assisted multiomics analysis. Cancer Immunol Res. 2022;10:811–28.

    Article  CAS  PubMed  Google Scholar 

  72. Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat Cancer. 2024. https://doi.org/10.1038/s43018-024-00775-4.

Download references

Funding

This work was supported by the National Key Research and Development Program of China (grant 2019YFA0803000 to JS), the Excellent Youth Foundation of Zhejiang Scientific (grant R22H1610037 to JS), the National Natural Science Foundation of China (grant 82173078 to JS), the Natural Science Foundation of Zhejiang Province (grant 2022C03037 to JS). Supported by the Henan Provincial Department of Science and Technology, No. 212102310047. Supported by the Henan Provincial Health Commission, No. SBGJ202003005.

Author information

Authors and Affiliations

Contributions

CW and GZ conceptualized the study, designed the experiments, and drafted the manuscript. LW conducted data analysis and figure preparation. All three authors contributed equally to this work. ZJ and HT performed the experimental work. QL and JL performed the RF analysis. YH and XH organized the clinical trial and obtained the clinical samples. GZ assisted in coordinating the clinical trials. WZ and JS contributed to proofreading the manuscript and reviewed the manuscript. YH and XH supervised the project. JH helped with the manuscript review. JS secured funding.

Corresponding authors

Correspondence to Wei Zhang, Jianpeng Sheng, Xiaobin Hou or Yi Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41388_2024_3123_MOESM1_ESM.pdf

Correlation between skin rashes and treatment outcomes. Distribution of patients with and without rashes among those exhibiting good (0–1) and poor (2–3) responses.

Distribution of LAMP3-positive DCs across various conditions.

Single-cell RNA-sequencing profile of ESCC TME.

lmaging mass cytometry antibody panel

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Zhang, G., Wang, L. et al. Spatial proteomic profiling elucidates immune determinants of neoadjuvant chemo-immunotherapy in esophageal squamous cell carcinoma. Oncogene 43, 2751–2767 (2024). https://doi.org/10.1038/s41388-024-03123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03123-z

This article is cited by

Search

Quick links