Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Clinical Research
  • Published:

Head-to-head comparison of diagnostic test accuracy between biparametric and multiparametric MRI: an updated systematic review and bivariate meta-analysis

Abstract

Background

Prostate Cancer (PCa) is a leading cause of cancer-related mortality globally. Clinically significant PCa (CsPCa) is associated with more aggressive disease, making accurate diagnosis crucial. Multiparametric Magnetic Resonance Imaging (Mp-MRI) is a well-established tool for PCa detection, but the dynamic contrast-enhanced (DCE) sequence raises concerns due to cost, risks, and patient experience. Biparametric MRI (Bp-MRI) has emerged as an alternative, but its diagnostic performance compared to Mp-MRI has not been thoroughly examined through a systematic review and meta-analysis in recent years.

Methods

A systematic review and meta-analysis were conducted to compare the diagnostic accuracy of Bp-MRI and Mp-MRI for detecting CsPCa by assessing the databases MEDLINE/PubMed, CENTRAL Cochrane, and ClinicalTrials.gov. Studies published between 2012 and 2024 that compared Bp-MRI and Mp-MRI using histopathological analysis as the reference standard were included. Data were extracted to obtain diagnostic test accuracy measurements (sensitivity, specificity, diagnostic odds ratio, positive and negative likelihood ratios) and study characteristics. Statistical analysis involved two bivariate random-effects models, a summary Receiver Operating Characteristic (sROC) curve, and meta-regression models assessing the comparison of both diagnostic test accuracies and the interaction of different study-level covariates.

Results

Nineteen studies involving 5,173 patients were included. Mp-MRI demonstrated a pooled sensitivity of 0.90 (95% CI: 0.87–0.93) and a specificity of 0.64 (95% CI: 0.50–0.76), while Bp-MRI showed a pooled sensitivity of 0.89 (95% CI: 0.85–0.92) and a specificity of 0.73 (95% CI: 0.62–0.82). Both modalities showed similar diagnostic performance with overlapping sROC curves. Meta-regression revealed no statistically significant difference between the two tools, and the study-level covariates did not influence the results.

Conclusion

Bp-MRI is a viable alternative to Mp-MRI for detecting CsPCa, with comparable diagnostic accuracy, especially when contrast agents are a concern. Further prospective randomized studies are needed to confirm these findings.

Registry

PROSPERO (CRD42024552125).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA 2020 flow diagram.
Fig. 2: Coupled forest plot displaying individual and pooled sensitivity and specificity estimates from the bivariate model of multiparametric magnetic resonance imaging.
Fig. 3: Coupled forest plot displaying individual and pooled sensitivity and specificity estimates from the bivariate model of Biparametric magnetic resonance imaging.
Fig. 4: Summary receiver operating characteristic curves.

Similar content being viewed by others

Data availability

All data analyzed or generated during the development of this study are included in this published article and its supplementary data file.

References

  1. Bergengren O, Pekala KR, Matsoukas K, Fainberg J, Mungovan SF, Bratt O, et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur Urol. 2023;84:191–206.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A, et al. Epidemiology and Prevention of Prostate Cancer. Eur Urol Oncol. 2021;4:877–92.

    Article  PubMed  Google Scholar 

  3. Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019;10:63–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matoso A, Epstein JI. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathol enero de. 2019;74:135–45.

    Article  Google Scholar 

  5. Lavery HJ, Droller MJ. Do Gleason patterns 3 and 4 prostate cancer represent separate disease states?. J Urol. 2012;188:1667–75.

    Article  PubMed  Google Scholar 

  6. Kovtun IV, Cheville JC, Murphy SJ, Johnson SH, Zarei S, Kosari F, et al. Lineage relationship of Gleason patterns in Gleason score 7 prostate cancer. Cancer Res. 2013;73:3275–84.

    Article  CAS  PubMed  Google Scholar 

  7. Sopyllo K, Erickson AM, Mirtti T. Grading evolution and contemporary prognostic biomarkers of clinically significant prostate cancer. Cancers. 2021;13.

  8. Franiel T, Stephan C, Erbersdobler A, Dietz E, Maxeiner A, Hell N, et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding-multiparametric MR imaging for detection and biopsy planning. Radiol abril de. 2011;259:162–72.

    Article  Google Scholar 

  9. Hambrock T, Somford DM, Hoeks C, Bouwense SAW, Huisman H, Yakar D, et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183:520–7.

    Article  CAS  PubMed  Google Scholar 

  10. Sciarra A, Panebianco V, Ciccariello M, Salciccia S, Cattarino S, Lisi D, et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res J Am Assoc Cancer Res. 2010;16:1875–83.

    Article  CAS  Google Scholar 

  11. Polascik TJ, Passoni NM, Villers A, Choyke PL. Modernizing the diagnostic and decision-making pathway for prostate cancer. Clin Cancer Res J Am Assoc Cancer Res. 2014;20:6254–7.

    Article  CAS  Google Scholar 

  12. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet Lond Engl. 2017;389:815–22.

    Article  Google Scholar 

  13. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med. 2018;378:1767–77.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mottet N, Cornford P, Van Den Bergh RCN, Briers E, De Santis M, Fanti S EAU guidelines on prostate cancer. Update April. 2014.

  15. Mason BR, Eastham JA, Davis BJ, Mynderse LA, Pugh TJ, Lee RJ, et al. Current Status of MRI and PET in the NCCN Guidelines for Prostate Cancer. J Natl Compr Cancer Netw JNCCN. 2019;17:506–13.

    Article  CAS  PubMed  Google Scholar 

  16. De Perrot T, Sadjo Zoua C, Glessgen CG, Botsikas D, Berchtold L, Salomir R, et al. Diffusion-Weighted MRI in the Genitourinary System. J Clin Med.2022;11.

  17. Wibmer AG, Vargas HA, Hricak H. Role of MRI in the diagnosis and management of prostate cancer. Future Oncol Lond Engl. 2015;11:2757–66.

    Article  CAS  Google Scholar 

  18. Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am J Roentgenol. 2012;198:1277–88.

    Article  Google Scholar 

  19. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. Eur Urol. 2016;69:16–40.

    Article  PubMed  Google Scholar 

  20. Faccioli N, Santi E, Foti G, Curti P, D’Onofrio M. Cost-effectiveness analysis of short biparametric magnetic resonance imaging protocol in men at risk of prostate cancer. Arch Ital Urol E Androl. 2022;94:160–5.

    Article  Google Scholar 

  21. Huh JS, Park KK. A Cost-Benefit Comparison of Biparametric Magnetic Resonance Imaging Versus Conventional Prostate Cancer Screening. J Urol Oncol. 2023;21:121–7.

    Article  Google Scholar 

  22. Pockros B, Davenport MS, Stensland K, Sekar R, Morgan T. Prostate Mri Without Contrast: Opportunity To Reduce Financial Toxicity And Improve Access For Patients With Prostate Cancer. Urol Oncol Semin Orig Investig. 2024;42:S96–7.

    Google Scholar 

  23. Porter KK, King A, Galgano SJ, Sherrer RL, Gordetsky JB, Rais-Bahrami S. Financial implications of biparametric prostate MRI. Prostate Cancer Prostatic Dis. 2020;23:88–93.

    Article  CAS  PubMed  Google Scholar 

  24. Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: A comprehensive risk assessment. J Magn Reson Imaging. 2017;46:338–53.

    Article  PubMed  Google Scholar 

  25. Rudnick MR, Wahba IM, Leonberg-Yoo AK, Miskulin D, Litt HI. Risks and Options With Gadolinium-Based Contrast Agents in Patients With CKD: A Review. Am J Kidney Dis J Natl Kidney Found. 2021;77:517–28.

    Article  CAS  Google Scholar 

  26. Bass EJ, Pantovic A, Connor M, Gabe R, Padhani AR, Rockall A, et al. A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk. Prostate Cancer Prostatic Dis. 2021;24:596–611.

    Article  CAS  PubMed  Google Scholar 

  27. Alabousi M, Salameh JP, Gusenbauer K, Samoilov L, Jafri A, Yu H, et al. Biparametric vs multiparametric prostate magnetic resonance imaging for the detection of prostate cancer in treatment-naïve patients: a diagnostic test accuracy systematic review and meta-analysis. BJU Int. 2019;124:209–20.

    Article  PubMed  Google Scholar 

  28. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zwinderman AH, Glas AS, Bossuyt PM, Florie J, Bipat S, Stoker J. Statistical models for quantifying diagnostic accuracy with multiple lesions per patient. Biostatistics. 2008;9:513–22.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  31. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies., Annals of Internal Medicine. 2011. Vol. 155 p. 529-36.

  32. Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58:982–90.

    Article  PubMed  Google Scholar 

  33. Viechtbauer W. Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model. J Educ Behav Stat. 2005;30:261–93.

    Article  Google Scholar 

  34. Holling H, Böhning W, Masoudi E, Böhning D, Sangnawakij P. Evaluation of a new version of I2 with emphasis on diagnostic problems. Commun Stat-Simul Comput. 2020;49:942–72.

    Article  Google Scholar 

  35. Gatsonis C, Paliwal P. Meta-Analysis of Diagnostic and Screening Test Accuracy Evaluations: Methodologic Primer. Am J Roentgenol. 2006;187:271–81.

    Article  Google Scholar 

  36. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–14.

    Article  PubMed  Google Scholar 

  37. Ost DE Interpretation and Application of the Likelihood Ratio to Clinical Practice in Thoracic Oncology. J Bronchol Interv Pulmonol [Internet]. 2022;29. Disponible en: https://journals.lww.com/bronchology/fulltext/2022/01000/interpretation_and_application_of_the_likelihood.10.aspx

  38. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PMM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56:1129–35.

    Article  PubMed  Google Scholar 

  39. Assel M, Sjoberg D, Elders A, Wang X, Huo D, Botchway A, et al. Guidelines for reporting of statistics for clinical research in urology. BJU Int. 2019;123:401–10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kattan MW, Vickers AJ. Statistical Analysis and Reporting Guidelines for CHEST. CHEST. 2020;158:S3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Donegan S, Williams L, Dias S, Tudur-Smith C, Welton N. Exploring treatment by covariate interactions using subgroup analysis and meta-regression in cochrane reviews: a review of recent practice. PloS One. 2015;10:e0128804.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hamza TH, van Houwelingen HC, Heijenbrok-Kal MH, Stijnen T. Associating explanatory variables with summary receiver operating characteristic curves in diagnostic meta-analysis. J Clin Epidemiol. 2009;62:1284–91.

    Article  PubMed  Google Scholar 

  43. Sánchez-Meca J, Botella J. Moderators analysis in meta-analysis: Meta-regression and subgroups analyzes. Cirugia Espanola. 2024;102:446–7.

    Article  PubMed  Google Scholar 

  44. Russo F, Mazzetti S, Regge D, Ambrosini I, Giannini V, Manfredi M, et al. Diagnostic accuracy of single-plane biparametric and multiparametric magnetic resonance imaging in prostate cancer: a randomized noninferiority trial in Biopsy-naïve Men. Eur Urol Oncol. 2021;4:855–62.

    Article  PubMed  Google Scholar 

  45. Thaiss WM, Moser S, Hepp T, Kruck S, Rausch S, Scharpf M, et al. Head-to-head comparison of biparametric versus multiparametric MRI of the prostate before robot-assisted transperineal fusion prostate biopsy. World J Urol. 2022;40:2431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuhl CK, Bruhn R, Krämer N, Nebelung S, Heidenreich A, Schrading S. Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology. 2017;285:493–505.

    Article  PubMed  Google Scholar 

  47. Pesapane F, Acquasanta M, Meo RD, Agazzi GM, Tantrige P, Codari M, et al. Comparison of sensitivity and specificity of biparametric versus multiparametric prostate MRI in the detection of prostate cancer in 431 men with elevated prostate-specific antigen levels. Diagnostics. 2021;11.

  48. Brembilla G, Giganti F, Sidhu H, Imbriaco M, Mallett S, Stabile A, et al. Diagnostic accuracy of abbreviated bi-parametric MRI (a-bpMRI) for prostate cancer detection and screening: a multi-reader study. Diagnostics. 2022;12.

  49. Xu L, Zhang G, Shi B, Liu Y, Zou T, Yan W, et al. Comparison of biparametric and multiparametric MRI in the diagnosis of prostate cancer. Cancer Imaging. 2019;19:90.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zawaideh JP, Sala E, Shaida N, Koo B, Warren AY, Carmisciano L, et al. Diagnostic accuracy of biparametric versus multiparametric prostate MRI: assessment of contrast benefit in clinical practice. Eur Radio. 2020;30:4039–49.

    Article  CAS  Google Scholar 

  51. van der Leest M, Israël B, Cornel EB, Zámecnik P, Schoots IG, van der Lelij H, et al. High Diagnostic Performance of Short Magnetic Resonance Imaging Protocols for Prostate Cancer Detection in Biopsy-naïve Men: The Next Step in Magnetic Resonance Imaging Accessibility. Eur Urol. 2019;76:574–81.

    Article  PubMed  Google Scholar 

  52. Thestrup KCD, Logager V, Baslev I, Møller JM, Hansen RH, Thomsen HS. Biparametric versus multiparametric MRI in the diagnosis of prostate cancer. Acta Radio Open. 2016;5:2058460116663046.

    Article  Google Scholar 

  53. Zhang J, Xu L, Zhang G, Zhang X, Bai X, Ji Z, et al. Comparison between biparametric and multiparametric MRI diagnosis strategy for prostate cancer in the peripheral zone using PI-RADS version 2.1. Abdom Radio. 2022;47:2905–16.

    Article  Google Scholar 

  54. Mahajan M, Gupta V, Gupta P, Sharma P, Abrol D. Evaluation of clinically significant prostate cancer using biparametric magnetic resonance imaging: An evolving concept. J Cancer Res Ther. 2022;18:1640–5.

    Article  CAS  PubMed  Google Scholar 

  55. Tamada T, Kido A, Yamamoto A, Takeuchi M, Miyaji Y, Moriya T, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS Version 2.1. J Magn Reson Imaging. 2021;53:283–91.

    Article  PubMed  Google Scholar 

  56. Bao J, Zhi R, Hou Y, Zhang J, Wu CJ, Wang XM, et al. Optimized MRI assessment for clinically significant prostate cancer: A STARD-compliant two-center study. J Magn Reson Imaging. 2021;53:1210–9.

    Article  PubMed  Google Scholar 

  57. Choi MH, Kim CK, Lee YJ, Jung SE. Prebiopsy biparametric MRI for clinically significant prostate cancer detection with PI-RADS Version 2: A multicenter study. Am J Roentgenol. 2019;212:839–46.

    Article  Google Scholar 

  58. Gatti M, Faletti R, Calleris G, Giglio J, Berzovini C, Gentile F, et al. Prostate cancer detection with biparametric magnetic resonance imaging (bpMRI) by readers with different experience: performance and comparison with multiparametric (mpMRI). Abdom Radio. 2019;44:1883–93.

    Article  Google Scholar 

  59. De Visschere P, Lumen N, Ost P, Decaestecker K, Pattyn E, Villeirs G. Dynamic contrast-enhanced imaging has limited added value over T2-weighted imaging and diffusion-weighted imaging when using PI-RADSv2 for diagnosis of clinically significant prostate cancer in patients with elevated PSA. Clin Radio. 2017;72:23–32.

    Article  Google Scholar 

  60. Barth BK, De Visschere PJL, Cornelius A, Nicolau C, Vargas HA, Eberli D, et al. Detection of clinically significant prostate cancer: short dual–pulse sequence versus standard multiparametric MR Imaging—A multireader study. Radiology. 2017;284:725–36.

    Article  PubMed  Google Scholar 

  61. Radtke JP, Boxler S, Kuru TH, Wolf MB, Alt CD, Popeneciu IV, et al. Improved detection of anterior fibromuscular stroma and transition zone prostate cancer using biparametric and multiparametric MRI with MRI-targeted biopsy and MRI-US fusion guidance. Prostate Cancer Prostat Dis. 2015;18:288–96.

    Article  CAS  Google Scholar 

  62. Van Nieuwenhove S, Saussez TP, Thiry S, Trefois P, Annet L, Michoux N, et al. Prospective comparison of a fast 1.5-T biparametric with the 3.0-T multiparametric ESUR magnetic resonance imaging protocol as a triage test for men at risk of prostate cancer. BJU Int. 2019;123:411–20.

    Article  PubMed  Google Scholar 

  63. Cuocolo R, Verde F, Ponsiglione A, Romeo V, Petretta M, Imbriaco M, et al. Clinically significant prostate cancer detection with biparametric MRI: A systematic review and meta-analysis. Am J Roentgenol. 2021;216:608–21.

    Article  Google Scholar 

  64. Asif A, Nathan A, Ng A, Khetrapal P, Chan VWS, Giganti F, et al. Comparing biparametric to multiparametric MRI in the diagnosis of clinically significant prostate cancer in biopsy-naive men (PRIME): a prospective, international, multicentre, non-inferiority within-patient, diagnostic yield trial protocol. BMJ Open. 2023;13:e070280.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wen L, Badgett R,Cornell J.Number needed to treat: A descriptor for weighing therapeutic options.Am J Health Syst Pharm.2005;62:2031–6.

    Article  PubMed  Google Scholar 

Download references

Funding

This study received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

CAGB and CMGG conceived and designed the study. CAGB, VSM, CMGG, and JEJG acquired the data. CAGB and MIAG analyzed and interpreted the data. CAGB, CMGG, JEJG, NGB, MIAG, LFPC, MIRR, and VSM drafted the manuscript. CAGB, CMGG, JEJG, NGB, MIAG, LFPC, MIRR, and VSM critically revised the manuscript for important intellectual content. CAGB and CMGG supervised the study.

Corresponding author

Correspondence to Carlos A. Garcia-Becerra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed consent

This study did not involve the direct participation of human subjects; thus, an informed consent was not required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Becerra, C.A., Arias-Gallardo, M.I., Juarez-Garcia, J.E. et al. Head-to-head comparison of diagnostic test accuracy between biparametric and multiparametric MRI: an updated systematic review and bivariate meta-analysis. Prostate Cancer Prostatic Dis 28, 993–1004 (2025). https://doi.org/10.1038/s41391-025-00999-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41391-025-00999-0

This article is cited by

Search

Quick links