Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging in focal therapy: advanced ultrasound imaging and mpMRI—a comprehensive review

Subjects

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Under staging of PCa when the diagnostic strategy is limited to MRI findings: the additional value of mpUS for the detection of CsPCa missed at MRI.
Fig. 2: Focal therapy with laser ablation of a prostate cancer using transrectal approach and MR thermometry (Courtesy Dr. Jurgen Fütterer, Radboudumc and Pierre Bour, Certis Therapeutics).
Fig. 3: Focal therapy with laser ablation of a prostate cancer using real-time MR thermometry (Courtesy Dr. Jurgen Fütterer, Radboudumc and Pierre Bour, Certis Therapeutics).
Fig. 4: The critical role of mpMRI and PRECISE score.
Fig. 5: mpUS can improve PCa identification and staging. 67-year-old patient with two renal transplantations in 1991 (right iliac fossa) and in 2002 (left iliac fossa), with moderate chronic renal dysfunction in 2024, presenting with a slow PSA increase up to 6.1 ng/mL.

References

  1. Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer—2024 update. Part I: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2024;86:148–63.

  2. Ong S, Chen K, Grummet J, Yaxley J, Scheltema MJ, Stricker P, et al. Guidelines of guidelines: focal therapy for prostate cancer, is it time for consensus?. BJU Int. 2023;131:20–31.

    Article  PubMed  Google Scholar 

  3. Nair SM, Hatiboglu G, Relle J, Hetou K, Hafron J, Harle C, et al. Magnetic resonance imaging-guided transurethral ultrasound ablation in patients with localised prostate cancer: 3-year outcomes of a prospective Phase I study. BJU Int. 2021;127:544–52.

    Article  CAS  PubMed  Google Scholar 

  4. Schieda N, Nisha Y, Hadziomerovic AR, Prabhakar S, Flood TA, Breau RH, et al. Comparison of positive predictive values of biparametric MRI and multiparametric MRI-directed transrectal US-guided targeted prostate biopsy. Radiology. 2024;311:e231383.

    Article  PubMed  Google Scholar 

  5. Ghai S, Finelli A, Corr K, Chan R, Jokhu S, Li X, et al. MRI-guided focused ultrasound ablation for localized intermediate-risk prostate cancer: early results of a phase II trial. Radiology. 2021;298:695–703.

    Article  PubMed  Google Scholar 

  6. Lee MS, Moon MH, Kim YA, Sung CK, Woo H, Jeong H, et al. Is prostate imaging reporting and data system version 2 sufficiently discovering clinically significant prostate cancer? Per-lesion radiology-pathology correlation study. Am J Roentgenol. 2018;211:114–20.

    Article  Google Scholar 

  7. Priester A, Natarajan S, Khoshnoodi P, Margolis DJ, Raman SS, Reiter RE, et al. Magnetic resonance imaging underestimation of prostate cancer geometry: use of patient specific molds to correlate images with whole mount pathology. J Urol. 2017;197:320–6.

    Article  PubMed  Google Scholar 

  8. Le Nobin J, Rosenkrantz AB, Villers A, Orczyk C, Deng FM, Melamed J, et al. image guided focal therapy for magnetic resonance imaging visible prostate cancer: defining a 3-dimentional treatment margin based on magnetic resonance imaging histology C0-registration analysis. J Urol. 2015;194:364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Giganti F, Allen C, Emberton M, Moore CM, Kasivisvanathan V, PRECISION study group. Prostate Imaging Quality (PI-QUAL): a new quality control scoring system for multiparametric magnetic resonance imaging of the prostate from the PRECISION trial. Eur Urol Oncol. 2020;3:615–9.

    Article  PubMed  Google Scholar 

  10. Turkbey B, Purysko AS. PI-RADS: where next?. Radiology. 2023;307:e223128.

    Article  PubMed  Google Scholar 

  11. Englman C, Maffei D, Allen C, Kirkham A, Albertsen P, Kasivisvanathan V, et al. PRECISE version 2: updated recommendations for reporting prostate magnetic resonance imaging in patients on active surveillance for prostate cancer. Eur Urol. 2024;86:240–55.

  12. Giganti F, Dickinson L, Orczyk C, Haider A, Freeman A, Emberton M, et al. Prostate imaging after focal ablation (PI-FAB): a proposal for a scoring system for multiparametric MRI of the prostate after focal therapy. Eur Urol Oncol. 2023;6:629–34.

    Article  PubMed  Google Scholar 

  13. Light A, Mayor N, Cullen E, Kirkham A, Padhani AR, Arya M, et al. The transatlantic recommendations for prostate gland evaluation with magnetic resonance imaging after focal therapy (TARGET): a systematic review and international consensus recommendations. Eur Urol. 2024;85:466–82.

    Article  PubMed  Google Scholar 

  14. Purysko AS, Zacharias-Andrews K, Tomkins KG, Turkbey IB, Giganti F, Bhargavan-Chatfield M, et al. ACR prostate MR image quality improvement collaborative. improving prostate MR image quality in practice—initial results from the ACR prostate MR image quality improvement collaborative. J Am Coll Radio. 2024;21:1464–74.

    Article  Google Scholar 

  15. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76:340–51.

    Article  PubMed  Google Scholar 

  16. de Rooij M, Israël B, Barrett T, Giganti F, Padhani AR, Panebianco V, et al. Focus on the quality of prostate multiparametric magnetic resonance imaging: synopsis of the ESUR/ESUI recommendations on quality assessment and interpretation of images and radiologists’ training. Eur Urol. 2020;78:483–5.

    Article  PubMed  Google Scholar 

  17. Ponsiglione A, Stanzione A, Califano G, De Giorgi M, Collà Ruvolo C, D’Iglio I, et al. MR image quality in local staging of prostate cancer: Role of PI-QUAL in the detection of extraprostatic extension. Eur J Radio. 2023;166:110973.

    Article  Google Scholar 

  18. Windisch O, Benamran D, Dariane C, Favre MM, Djouhri M, Chevalier M, et al. Role of the prostate imaging quality PI-QUAL score for prostate magnetic resonance image quality in pathological upstaging after radical prostatectomy: a multicentre European study. Eur Urol Open Sci. 2022;47:94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dias AB, Chang SD, Fennessy FM, Ghafoor S, Ghai S, Panebianco V, et al. New prostate MRI scoring systems (PI-QUAL, PRECISE, PI-RR, and PI-FAB): AJR expert panel narrative review. Am J Roentgenol. 2024;224:e2430956.

  20. Gelikman DG, Kenigsberg AP, Mee Law Y, Yilmaz EC, Harmon SA, Parikh SH, et al. Evaluating diagnostic accuracy and inter-reader agreement of the prostate imaging after focal ablation scoring system. Eur Urol Open Sci. 2024;62:74–80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paxton M, Barbalat E, Perlis N, Menezes RJ, Gertner M, Dragas D, et al. Role of multiparametric MRI in long-term surveillance following focal laser ablation of prostate cancer. Br J Radio. 2022;95:20210414.

    Article  Google Scholar 

  22. Postema A, Mischi M, de la Rosette J, Wijkstra H. Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urol. 2015;33:1651–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Correas JM, Halpern EJ, Barr RG, Ghai S, Walz J, Bodard S, et al. Advanced ultrasound in the diagnosis of prostate cancer. World J Urol. 2021;39:661–76.

    Article  PubMed  Google Scholar 

  24. Ghai S, Toi A. Role of transrectal ultrasonography in prostate cancer. Radio Clin North Am. 2012;50:1061–73.

    Article  Google Scholar 

  25. Linden RA, Halpern EJ. Advances in transrectal ultrasound imaging of the prostate. Semin Ultrasound CT MR. 2007;28:249–57.

    Article  PubMed  Google Scholar 

  26. Loch T, Eppelmann U, Lehmann J, Wullich B, Loch A, Stöckle M. Transrectal ultrasound guided biopsy of the prostate: random sextant versus biopsies of sono-morphologically suspicious lesions. World J Urol. 2004;22:357–60.

    Article  PubMed  Google Scholar 

  27. Yunkai Z, Yaqing C, Jun J, Tingyue Q, Weiyong L, Yuehong Q, et al. Comparison of contrast-enhanced ultrasound targeted biopsy versus standard systematic biopsy for clinically significant prostate cancer detection: results of a prospective cohort study with 1024 patients. World J Urol. 2019;37:805–11.

    Article  PubMed  Google Scholar 

  28. Trabulsi EJ, Calio BP, Kamel SI, Gomella LG, Forsberg F, McCue P, et al. Prostate contrast enhanced transrectal ultrasound evaluation of the prostate with whole-mount prostatectomy correlation. Urology. 2019;133:187–91.

    Article  PubMed  Google Scholar 

  29. Zhu Y, Chen Y, Qi T, Jiang J, Qi J, Yu Y, et al. Prostate cancer detection with real-time elastography using a bi-plane transducer: comparison with step section radical prostatectomy pathology. World J Urol. 2014;32:329–33.

    Article  PubMed  Google Scholar 

  30. Zhang B, Ma X, Zhan W, Zhu F, Li M, Huang J, et al. Real-time elastography in the diagnosis of patients suspected of having prostate cancer: a meta-analysis. Ultrasound Med Biol. 2014;40:1400–7.

    Article  PubMed  Google Scholar 

  31. Aigner F, Pallwein L, Junker D, Schfer G, Mikuz G, Pedross F, et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol. 2010;184:913–7.

    Article  PubMed  Google Scholar 

  32. Emara DM, Naguib NN, Yehia M, El Shafei MM. Ultrasound elastography in characterization of prostatic lesions: correlation with histopathological findings. Br J Radio. 2020;93:20200035.

    Article  Google Scholar 

  33. Correas JM, Tissier AM, Khairoune A, Vassiliu V, Méjean A, Hélénon O, et al. Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. 2015;275:280–9.

    Article  PubMed  Google Scholar 

  34. Woo S, Kim SY, Lee MS, Cho JY, Kim SH. Shear wave elastography assessment in the prostate: an intraobserver reproducibility study. Clin Imaging. 2015;39:484–7.

    Article  PubMed  Google Scholar 

  35. Barr RG, Cosgrove D, Brock M, Cantisani V, Correas JM, Postema AW, et al. WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 5. Prostate. Ultrasound Med Biol. 2017;43:27–48.

    Article  PubMed  Google Scholar 

  36. Woo S, Suh CH, Kim SY, Cho JY, Kim SH. Shear-wave elastography for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Am J Roentgenol. 2017;209:806–14.

    Article  Google Scholar 

  37. Woo S, Kim SY, Cho JY, Kim SH. Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radio. 2014;15:346–55.

    Article  Google Scholar 

  38. Ageeli W, Wei C, Zhang X, Szewcyk-Bieda M, Wilson J, Li C, et al. Quantitative ultrasound shear wave elastography (USWE)-measured tissue stiffness correlates with PIRADS scoring of MRI and Gleason score on whole-mount histopathology of prostate cancer: implications for ultrasound image-guided targeting approach. Insights Imaging. 2021;12:96.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boehm K, Salomon G, Beyer B, Schiffmann J, Simonis K, Graefen M, et al. Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol. 2015;193:794–800.

    Article  PubMed  Google Scholar 

  40. Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc. 2013;27:3280–7.

    Article  PubMed  Google Scholar 

  41. Rouvière O, Melodelima C, Hoang Dinh A, Bratan F, Pagnoux G, Sanzalone T, et al. Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur Radio. 2017;27:1858–66.

    Article  Google Scholar 

  42. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 2012;28:13–20.

    Article  PubMed  Google Scholar 

  43. Ji Y, Ruan L, Ren W, Dun G, Liu J, Zhang Y, et al. Stiffness of prostate gland measured by transrectal real-time shear wave elastography for detection of prostate cancer: a feasibility study. Br J Radio. 2019;92:20180970.

    Article  Google Scholar 

  44. Boehm K, Budäus L, Tennstedt P, Beyer B, Schiffmann J, Larcher A, et al. Prediction of significant prostate cancer at prostate biopsy and per core detection rate of targeted and systematic biopsies using real-time shear wave elastography. Urol Int. 2015;95:189–96.

    Article  PubMed  Google Scholar 

  45. Xiang L-H, Fang Y, Wan J, Xu G, Yao MH, Ding SS, et al. Shear-wave elastography: role in clinically significant prostate cancer with false-negative magnetic resonance imaging. Eur Radio. 2019;29:6682–9.

    Article  Google Scholar 

  46. Yang Y, Zhao X, Zhao X, Shi J, Huang Y. Value of shear wave elastography for diagnosis of primary prostate cancer: a systematic review and meta-analysis. Med Ultrason. 2019;21:382–8.

    Article  PubMed  Google Scholar 

  47. Li P, You S, Nguyen C, Wang Y, Kim J, Sirohi D, et al. Genes involved in prostate cancer progression determine MRI visibility. Theranostics. 2018;8:1752–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dinis Fernandes C, Schaap A, Kant J, van Houdt P, Wijkstra H, Bekers E, et al. Radiogenomics analysis linking multiparametric MRI and transcriptomics in prostate cancer. Cancers. 2023;15:3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ogbonnaya CN, Alsaedi BSO, Alhussaini AJ, Hislop R, Pratt N, Nabi G. Radiogenomics reveals correlation between quantitative texture radiomic features of biparametric MRI and hypoxia-related gene expression in men with localised prostate cancer. J Clin Med. 2023;12:2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Houlahan KE, Salmasi A, Sadun TY, Pooli A, Felker ER, Livingstone J, et al. Molecular hallmarks of multiparametric magnetic resonance imaging visibility in prostate cancer. Eur Urol. 2019;76:18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lehto TK, Pylväläinen J, Sandeman K, Kenttämies A, Nordling S, Mills IG, et al. Histomic and transcriptomic features of MRI-visible and invisible clinically significant prostate cancers are associated with prognosis. Int J Cancer. 2024;154:926–39.

    Article  CAS  PubMed  Google Scholar 

  52. Eineluoto JT, Sandeman K, Pohjonen J, Sopyllo K, Nordling S, Stürenberg C, et al. Associations of PTEN and ERG with magnetic resonance imaging visibility and assessment of non-organ-confined pathology and biochemical recurrence after radical prostatectomy. Eur Urol Focus. 2021;7:1316–23.

    Article  PubMed  Google Scholar 

  53. Khoo A, Liu LY, Sadun TY, Salmasi A, Pooli A, Felker E, et al. Prostate cancer multiparametric magnetic resonance imaging visibility is a tumor-intrinsic phenomena. J Hematol Oncol. 2022;15:48.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wibmer AG, Lefkowitz RA, Lakhman Y, Chaim J, Nikolovski I, Sala E, et al. MRI-detectability of clinically significant prostate cancer relates to oncologic outcomes after prostatectomy. Clin Genitourin Cancer. 2022;20:319–25.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stavrinides V, Giganti F, Trock B, Punwani S, Allen C, Kirkham A, et al. Five-year outcomes of magnetic resonance imaging-based active surveillance for prostate cancer: a large cohort study. Eur Urol. 2020;78:443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Valentin B, Arsov C, Ullrich T, Al-Monajjed R, Boschheidgen M, Hadaschik BA, et al. Magnetic resonance imaging-guided active surveillance without annual rebiopsy in patients with grade group 1 or 2 prostate cancer: the prospective PROMM-AS study. Eur Urol Open Sci. 2023;59:30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rohrbach D, Wodlinger B, Wen J, Mamou J, Feleppa E. High-frequency quantitative ultrasound for imaging prostate cancer using a novel micro-ultrasound scanner. Ultrasound Med Biol. 2018;44:1341–54.

    Article  PubMed  Google Scholar 

  58. Ghai S, Eure G, Fradet V, Hyndman ME, McGrath T, Wodlinger B, et al. Assessing cancer risk on novel 29 MHz micro-ultrasound images of the prostate: creation of the micro-ultrasound protocol for prostate risk identification. J Urol. 2016;196:562–9.

    Article  PubMed  Google Scholar 

  59. Basso Dias A, Ghai S. Micro-ultrasound: current role in prostate cancer diagnosis and future possibilities. Cancers. 2023;15:1280.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rakauskas A, Peters M, Martel P, van Rossum PSN, La Rosa S, Meuwly JY, et al. Do cancer detection rates differ between transperineal and transrectal micro-ultrasound mpMRI-fusion-targeted prostate biopsies? A propensity score-matched study. PLoS ONE. 2023;18:e0280262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sountoulides P, Pyrgidis N, Polyzos SA, Mykoniatis I, Asouhidou E, Papatsoris A, et al. micro-ultrasound-guided vs multiparametric magnetic resonance imaging-targeted biopsy in the detection of prostate cancer: a systematic review and meta-analysis. J Urol. 2021;205:1254–62.

    Article  PubMed  Google Scholar 

  62. You C, Li X, Du Y, Peng L, Wang H, Zhang X, et al. The microultrasound-guided prostate biopsy in detection of prostate cancer: a systematic review and meta-analysis. J Endourol. 2022;36:394–402.

    Article  PubMed  Google Scholar 

  63. García Rojo E, García Gómez B, Sopeña Sutil R, Vallejo Arzayus D, Justo Quintas J, García Barreras S, et al. Comparison in detection rate of clinically significant prostate cancer between microultrasound-guided prostate biopsy (ExactVu) and multiparametric resonance imaging-guided prostate biopsy (Koelis System). Urology. 2024;183:163–9.

    Article  PubMed  Google Scholar 

  64. Ghai S, Perlis N, Atallah C, Jokhu S, Corr K, Lajkosz K, et al. Comparison of micro-US and multiparametric MRI for prostate cancer detection in biopsy-naive men. Radiology. 2022;305:390–8.

    Article  PubMed  Google Scholar 

  65. Albers P, Bennett J, Evans M, Martin ES, Wang B, Broomfield S, et al. Micro-ultrasound for the detection of clinically significant prostate cancer in biopsy-naive men with negative MRI. Can Urol Assoc J. 2024;18:208.

  66. Ploussard G, Fiard G, Barret E, Brureau L, Créhange G, Dariane C, et al. French AFU cancer committee guidelines—update 2022-2024: prostate cancer—diagnosis and management of localised disease. Prog Urol. 2022;32:1275–372.

    Article  CAS  PubMed  Google Scholar 

  67. Regis F, Casale P, Persico F, Colombo P, Cieri M, Guazzoni G, et al. Use of 29-MHz micro-ultrasound for local staging of prostate cancer in patients scheduled for radical prostatectomy: a feasibility study. Eur Urol Open Sci. 2020;19:20–3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Albers P, Wang B, Broomfield S, Medina Martín A, Fung C, Kinnaird A. Micro-ultrasound versus magnetic resonance imaging in prostate cancer active surveillance. Eur Urol Open Sci. 2022;46:33–5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chin JL, Billia M, Relle J, Roethke MC, Popeneciu IV, Kuru TH, et al. Magnetic resonance imaging-guided transurethral ultrasound ablation of prostate tissue in patients with localized prostate cancer: a prospective phase 1 clinical trial. Eur Urol. 2016;70:447–55.

    Article  PubMed  Google Scholar 

  70. Lebastchi AH, George AK, Polascik TJ, Coleman J, de la Rosette J, Turkbey B, et al. Standardized nomenclature and surveillance methodologies after focal therapy and partial gland ablation for localized prostate cancer: an international multidisciplinary consensus. Eur Urol. 2020;78:371–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Duan H, Ghanouni P, Daniel B, Rosenberg J, Davidzon GA, Aparici CM, et al. A pilot study of 68Ga-PSMA11 and 68Ga-RM2 PET/MRI for evaluation of prostate cancer response to highintensity focused ultrasound therapy. J Nucl Med. 2023;64:592–7.

    Article  CAS  PubMed  Google Scholar 

  72. Tay KJ, Amin MB, Ghai S, Jimenez RE, Kench JG, Klotz L, et al. Surveillance after prostate focal therapy. World J Urol. 2019;37:397–407.

    Article  PubMed  Google Scholar 

  73. Walser E, Nance A, Ynalvez L, Yong S, Aoughsten JS, Eyzaguirre EJ, et al. Focal laser ablation of prostate cancer: results in 120 patients with low- to intermediate-risk disease. J Vasc Inter Radio. 2019;30:401–409.e2.

    Article  Google Scholar 

  74. Ehdaie B, Tempany CM, Holland F, Sjoberg DD, Kibel AS, Trinh QD, et al. MRI-guided focused ultrasound focal therapy for patients with intermediate-risk prostate cancer: a phase 2b, multicentre study. Lancet Oncol. 2022;23:910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gnanapragasam VJ, Lophatananon A, Wright KA, Muir KR, Gavin A, Greenberg DC. Improving clinical risk stratification at diagnosis in primary prostate cancer: a prognostic modelling study. PLoS Med. 2016;13:e1002063.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lophatananon A, Byrne MHV, Barrett T, Warren A, Muir K, Dokubo I, et al. Assessing the impact of MRI based diagnostics on pre-treatment disease classification and prognostic model performance in men diagnosed with new prostate cancer from an unscreened population. BMC Cancer. 2022;22:878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Drost FH, Osses D, Nieboer D, Bangma CH, Steyerberg EW, Roobol MJ, et al. Prostate magnetic resonance imaging, with or without magnetic resonance imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a cochrane systematic review and meta-analysis. Eur Urol. 2020;77:78–94.

    Article  PubMed  Google Scholar 

  78. Ozkan TA, Eruyar AT, Cebeci OO, Memik O, Ozcan L, Kuskonmaz I. Interobserver variability in Gleason histological grading of prostate cancer. Scand J Urol. 2016;50:420–4.

    Article  CAS  PubMed  Google Scholar 

  79. Lam TBL, MacLennan S, Willemse PM, Mason MD, Plass K, Shepherd R, et al. EAU-EANM-ESTROESUR-SIOG prostate cancer guideline panel consensus statements for deferred treatment with curative intent for localised prostate cancer from an international collaborative study (DETECTIVE study). Eur Urol. 2019;76:790–813.

    Article  PubMed  Google Scholar 

  80. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62.

    Article  CAS  PubMed  Google Scholar 

  81. Willemse PM, Davis NF, Grivas N, Zattoni F, Lardas M, Briers E, et al. Systematic review of active surveillance for clinically localised prostate cancer to develop recommendations regarding inclusion of intermediate-risk disease, biopsy characteristics at inclusion and monitoring, and surveillance repeat biopsy strategy. Eur Urol. 2022;81:337–46.

    Article  PubMed  Google Scholar 

  82. Emmett L, Buteau J, Papa N, Moon D, Thompson J, Roberts MJ, et al. The additive diagnostic value of prostate-specific membrane antigen positron emission tomography computed tomography to multiparametric magnetic resonance imaging triage in the diagnosis of prostate cancer (PRIMARY): a prospective multicentre study. Eur Urol. 2021;80:682–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JMC, CD, and RRP were responsible for the writing of the manuscript and the literature. JF and JdlR were involved in the review of the article, improving the manuscript and selecting the figures. SG, FB, XC, JFW, ME, PL, PC, CdN, and LK participated in the final review of the manuscript, the improvement of the language, the update of the reference list.

Corresponding author

Correspondence to Jean-Michel Correas.

Ethics declarations

Competing interests

CdN is Editor of Prostate Cancer and Prostatic Diseases.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correas, JM., Dariane, C., Renard Penna, R. et al. Imaging in focal therapy: advanced ultrasound imaging and mpMRI—a comprehensive review. Prostate Cancer Prostatic Dis (2025). https://doi.org/10.1038/s41391-025-01017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41391-025-01017-z

Search

Quick links