Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin-associated circRNA ciCRLF3(2) regulates cell differentiation blockage via activating non-homologous end joining–based DNA repair

Subjects

Abstract

DNA damage response (DDR) is a complicated network that responds to DNA lesions to prevent their accumulation; a defective DDR is one hallmark of cancer. Although targeting DDR pathways has been considered as a therapeutic approach, DDR inhibitors have also been reported ineffective for treating some low mutation burden cancers, such as Mixed-lineage leukemia (MLL)-rearranged (MLL-r) leukemia, a clinically fatal and refractory malignancy. Exploring the roles and mechanisms of DDR pathways in these low mutation burden cancers may help understand the chromatin biology and develop therapeutic strategies. Here, we identified a set of DDR-related chromatin-associated circular RNAs (cacircRNAs) that regulate DNA repair via the non-homologous end joining (NHEJ) pathway, which is vital for meeting the high DNA repair demands during the progression of MLL-r leukemia. Among these cacircRNAs, we identified ciCRLF3(2) as a previously unknown component of the NHEJ complex. We showed that ciCRLF3(2) recruits NHEJ regulators to DNA lesions, supporting abundant DNA repair in leukemia cells. ciCRLF3(2) abundance is abnormally upregulated in MLL-r leukemia and indicates a poor prognosis. Targeting ciCRLF3(2) suppressed NHEJ-mediated DNA repair, leading to DNA damage and broad anti-cancer effects in vitro and in vivo. A patient-derived xenograft model of MLL-r leukemia further indicated that ciCRLF3(2) depletion can decrease the leukemic burden. These findings demonstrate the function of cacircRNAs in DDR and chromatin biology and reveal a new avenue for developing strategies to treat low mutation burden cancers, such as MLL-r leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-throughput sequencing profiles cacircRNAs and identifies the redistribution of them in response to DNA damage.
Fig. 2: CacircRNAs downregulation improves DNA damage level and suppresses the progression of MLL-r leukemia.
Fig. 3: ciCRLF3(2) regulates DNA repair by NHEJ in MLL-r leukemia cells.
Fig. 4: NF90 binds to ciCRLF3(2) to regulates DNA repair by NHEJ in MLL-r leukemia cells.
Fig. 5: ciCRLF3(2) recruits NHEJ regulators.
Fig. 6: CacircRNAs silencing impairs the progression and infiltration of MLL-r leukemia in vivo.
Fig. 7: The potential value of ciCRLF3(2) in MLL-r leukemia.

Similar content being viewed by others

Data availability

The circRNA RNA-seq data in this study has been uploaded to Sequence Read Archive (SRA) database. The BioProject No. is PRJNA1276304. All other study data are included in the article and/or Supplemental Information. Any information required to reanalyze the data reported in this study is available from the corresponding authors (wangwt8@mail.sysu.edu.cn) upon request.

References

  1. Panier S, Wang S, Schumacher B. Genome instability and DNA repair in somatic and reproductive aging. Annu Rev Pathol. 2024;19:261–290.

    Article  CAS  PubMed  Google Scholar 

  2. Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23:78–94.

    Article  CAS  PubMed  Google Scholar 

  3. Kellner V, Luke B. Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair. EMBO J. 2020;39:e102309.

    Article  CAS  PubMed  Google Scholar 

  4. Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J. 2019;38:e101801.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alghoul E, Basbous J, Constantinou A. Compartmentalization of the DNA damage response: Mechanisms and functions. DNA Repair (Amst). 2023;128:103524.

    Article  CAS  PubMed  Google Scholar 

  6. Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016;16:20–33.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ. 2022;29:961–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jessica L, Hopkins LL, Lee Z. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022;36:278–293.

    Article  Google Scholar 

  9. Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020;21:765–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16:81–104.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ngoi NYL, Pilie PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol. 2024;21:278–293.

    Article  PubMed  Google Scholar 

  12. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martincorena Iñigo. PJC. Somatic mutation in cancer and normal cells. Science. 2015;349:1483–1489.

    Article  CAS  PubMed  Google Scholar 

  15. Conn VM, Gabryelska M, Toubia J, Kirk K, Gantley L, Powell JA, et al. Circular RNAs drive oncogenic chromosomal translocations within the MLL recombinome in leukemia. Cancer Cell. 2023;41:1309–1326.

    Article  CAS  PubMed  Google Scholar 

  16. Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N, et al. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med. 2015;21:1481–1490.

    Article  CAS  PubMed  Google Scholar 

  17. Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature. 2019;574:538–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malcikova J, Pavlova S, Kunt Vonkova B, Radova L, Plevova K, Kotaskova J, et al. Low-burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options. Blood. 2021;138:2670–2685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwok M, Agathanggelou A, Stankovic T. DNA damage response defects in hematologic malignancies: mechanistic insights and therapeutic strategies. Blood. 2024;143:2123–2144.

    Article  CAS  PubMed  Google Scholar 

  20. Wong N-HM, So CWE. Novel therapeutic strategies for MLL-rearranged leukemias. Biochim Biophys Acta Gene Regul Mech. 2020;1863:194584.

    Article  CAS  PubMed  Google Scholar 

  21. Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol. 2022;16:3811–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalamara V, Garinis GA. The epitranscriptome: reshaping the DNA damage response. Trends Cell Biol. 2024;35:294–304.

  23. Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell. 2022;185:2016–2034.

    Article  CAS  PubMed  Google Scholar 

  24. Papaspyropoulos A, Hazapis O, Lagopati N, Polyzou A, Papanastasiou AD, Liontos M, et al. The role of circular RNAs in DNA damage response and repair. Cancers (Basel). 2021;13:5352.

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Wang Y, Lin J, Song Z, Wang Q, Zhao W, et al. Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs. Nat Commun. 2022;13:5769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19:188–206.

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Zhang JL, Lei YN, Liu XQ, Xue W, Zhang Y, et al. Linking circular intronic RNA degradation and function in transcription by RNase H1. Sci China Life Sci. 2021;64:1795–1809.

    Article  CAS  PubMed  Google Scholar 

  28. Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29:481–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abaza Y, Zeidan AM. Immune checkpoint inhibition in acute myeloid leukemia and myelodysplastic syndromes. Cells. 2022;11:2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muntean AG, Hess JL. The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol. 2012;7:283–301.

    Article  CAS  PubMed  Google Scholar 

  32. Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer. 2015;15:334–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meyer C, Larghero P, Lopes BA, Burmeister T, Gröger D, Sutton R, et al. The KMT2A recombinome of acute leukemias in 2023. Leukemia. 2023;37:988–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han C, Sun LY, Luo XQ, Pan Q, Sun YM, Zeng ZC, et al. Chromatin-associated orphan snoRNA regulates DNA damage-mediated differentiation via a non-canonical complex. Cell Rep. 2022;38:110421.

    Article  CAS  PubMed  Google Scholar 

  35. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–691.

    Article  CAS  PubMed  Google Scholar 

  36. Yin Y, Lu JY, Zhang X, Shao W, Xu Y, Li P, et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature. 2020;580:147–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zuckerman B, Ulitsky I. Predictive models of subcellular localization of long RNAs. RNA. 2019;25:557–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–264.

    Article  PubMed  Google Scholar 

  39. Chen L-L, Bindereif A, Bozzoni I, Chang HY, Matera AG, Gorospe M, et al. A guide to naming eukaryotic circular RNAs. Nat Cell Biol. 2023;25:1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Padella A, Ghelli Luserna Di Rorà A, Marconi G, Ghetti M, Martinelli G, Simonetti G. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol. 2022;15:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takagi M. DNA damage response and hematological malignancy. Int J Hematol. 2017;106:345–356.

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods. 2021;18:51–59.

    Article  PubMed  Google Scholar 

  43. Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, et al. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods. 2021;18:499–506.

    Article  CAS  PubMed  Google Scholar 

  44. Gibbons HR, Aune TM. Immunoprecipitation of DNA:RNA Hybrids Using the S9.6 Antibody. Methods Mol Biol. 2020;2161:195–207.

    Article  CAS  PubMed  Google Scholar 

  45. Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C, Pan Q, et al. circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood. 2019;134:1533–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iioka H, Loiselle D, Haystead TA, Macara IG. Efficient detection of RNA-protein interactions using tethered RNAs. Nucleic Acids Res. 2011;39:e53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Y, Jiang T, Zhang H, Gou X, Han C, Wang J, et al. LRRC31 inhibits DNA repair and sensitizes breast cancer brain metastasis to radiation therapy. Nat Cell Biol. 2020;22:1276–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Head PE, Kapoor-Vazirani P, Nagaraju GP, Zhang H, Rath SK, Luong NC, et al. DNA-PK is activated by SIRT2 deacetylation to promote DNA double-strand break repair by non-homologous end joining. Nucleic acids Res. 2023;51:7972–7987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shamanna RA, Hoque M, Lewis-Antes A, Azzam EI, Lagunoff D, Pe’Ery T, et al. The NF90/NF45 Complex Participates in DNA Break Repair via Nonhomologous End Joining. Mol Cell Biol. 2011;31:4832–4843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, et al. METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Mol Cell. 2020;79:425–442.

    Article  CAS  PubMed  Google Scholar 

  51. Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV. Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem Biol. 2011;6:628–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Levone BR, Lenzken SC, Antonaci M, Maiser A, Rapp A, Conte F, et al. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol. 2021;220:e202008030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bianchini RM, Kurz EU. The analysis of protein recruitment to laser microirradiation-induced DNA damage in live cells: Best practices for data analysis. DNA Repair (Amst). 2023;129:103545.

    Article  CAS  PubMed  Google Scholar 

  54. Tang M, Chen G, Tu B, Hu Z, Huang Y, DuFort CC, et al. SMYD2 inhibition–mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity. Sci Adv. 2023;9:eade6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang PL, Teng L, Feng YC, Yue YM, Han MM, Yan Q, et al. The N-Myc-responsive lncRNA MILIP promotes DNA double-strand break repair through non-homologous end joining. Proc Natl Acad Sci USA. 2022;119:e2208904119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walsh KD, Kato TA. Alkaline comet assay to detect DNA damage. Methods Mol Biol. 2023;2519:65–72.

    Article  PubMed  Google Scholar 

  57. Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell. 2017;67:214–227.

    Article  CAS  PubMed  Google Scholar 

  58. Patino C, Haenni AL, Urcuqui-Inchima S. NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie. 2015;108:20–24.

    Article  CAS  PubMed  Google Scholar 

  59. Kuwano Y, Pullmann R Jr., Marasa BS, Abdelmohsen K, Lee EK, Yang X, et al. NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res. 2010;38:225–238.

    Article  CAS  PubMed  Google Scholar 

  60. Heikamp EB, Henrich JA, Perner F, Wong EM, Hatton C, Wen Y, et al. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. Blood. 2022;139:894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7:716–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gray ZH, Chakraborty D, Duttweiler RR, Alekbaeva GD, Murphy SE, Chetal K, et al. Epigenetic balance ensures mechanistic control of MLL amplification and rearrangement. Cell. 2023;186:4528–4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liang K, Volk AG, Haug JS, Marshall SA, Woodfin AR, Bartom ET, et al. Therapeutic Targeting of MLL degradation pathways in MLL-rearranged Leukemia. Cell. 2017;168:59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen TQ, Huang HJ, Zhu SX, Chen XT, Pu KJ, Wang D, et al. Blockade of the lncRNA-DOT1L-LAMP5 axis enhances autophagy and promotes degradation of MLL fusion proteins. Exp Hematol Oncol. 2024;13:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang WT, Chen TQ, Zeng ZC, Pan Q, Huang W, Han C, et al. The lncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. J Hematol Oncol. 2020;13:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ, Wang WT. New insight into circRNAs: characterization, strategies, and biomedical applications. Exp Hematol Oncol. 2023;12:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Talhouarne GJS, Gall JG. Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc Natl Acad Sci USA. 2018;115:E7970–E7977.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 2017;549:548–552.

    Article  PubMed  PubMed Central  Google Scholar 

  69. De Bragança S, Aicart-Ramos C, Arribas-Bosacoma R, Rivera-Calzada A, Unfried JP, Prats-Mari L, et al. APLF and long non-coding RNA NIHCOLE promote stable DNA synapsis in non-homologous end joining. Cell Rep. 2023;42:111917.

    Article  PubMed  Google Scholar 

  70. Feng P, Wang Y, Liu N, Chen Y, Hu Y, Huang Z, et al. High expression of PPP1CC promotes NHEJ-mediated DNA repair leading to radioresistance and poor prognosis in nasopharyngeal carcinoma. Cell Death Differ. 2024;31:683–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol. 2022;23:125–140.

    Article  CAS  PubMed  Google Scholar 

  72. Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. Wiley Interdiscip Rev RNA. 2015;6:243–256.

    Article  CAS  PubMed  Google Scholar 

  73. Ye J, Jin H, Pankov A, Song JS, Blelloch R. NF45 and NF90/NF110 coordinately regulate ESC pluripotency and differentiation. RNA. 2017;23:1270–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grasso G, Kiernan R. The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci. 2022;23:13584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barbier J, Chen X, Sanchez G, Cai M, Helsmoortel M, Higuchi T, et al. An NF90/NF110-mediated feedback amplification loop regulates dicer expression and controls ovarian carcinoma progression. Cell Res. 2018;28:556–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li B, Wang J, Cheng X, Liu Y, Yang Y, Yang X, et al. Molecular mechanism underlying the subtype-selectivity of competitive inhibitor NF110 and its distinct potencies in human and rat P2X3 receptors. Sci Bull (Beijing). 2018;63:1616–1625.

    Article  CAS  PubMed  Google Scholar 

  77. Sun L, Wang W, Han C, Huang W, Sun Y, Fang K, et al. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol Cell. 2021;81:4493–4508.

    Article  CAS  PubMed  Google Scholar 

  78. Zeng ZC, Pan Q, Sun YM, Huang HJ, Chen XT, Chen TQ, et al. METTL3 protects METTL14 from STUB1-mediated degradation to maintain m(6)A homeostasis. EMBO Rep. 2023;24:e55762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hu Z, Mi S, Zhao T, Peng C, Peng Y, Chen L, et al. BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J. 2020;39:e104133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by National Key R&D Program of China (Nos.2021YFA1300502 and 2022YFA1303302), National Natural Science Foundation of China (Nos. 32170570,32370594, and 32400439), and Guangdong Province (Nos. 2021B1515020002 and 2022A1515140018), and Guangzhou (No. 2024A04J5004).

Author information

Authors and Affiliations

Authors

Contributions

K.J.P., X.T.C. and S.X.Z. designed and performed the research, analyzed the data, and wrote the manuscript. Y.A., X.Y.F., J.Y.L., H.J.H., C.L.Z., M.Y.Y., B.R.H., Y.C.W., Y.X.M., C. F., N. Z., D. W., T.Q.C. and Y.M.S. performed the research and analyzed the data. K.J.P., X.T.C. and S.X.Z. collected and analyzed the clinical data. Y.Q.C. and W.T.W. designed the research, analyzed the data, and wrote the manuscript. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yue-Qin Chen or Wen-Tao Wang.

Ethics declarations

Competing interests

The authors declare no competing interest.

Ethics

All patient samples were obtained with informed consent from the first Affiliated Hospital of Sun Yat-sen University. Sample collection was approved by the Hospital’s Protection of Human Subjects Committee. Additionally, all animal experiments were approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University (Approval No. SYSU-IACUC-2023-B0438) and were performed in accordance with the approved protocols.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, KJ., Chen, XT., Zhu, SX. et al. Chromatin-associated circRNA ciCRLF3(2) regulates cell differentiation blockage via activating non-homologous end joining–based DNA repair. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01574-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01574-9

Search

Quick links