Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

K11- and K29-ubiquitination-mediated nuclear translocation of glycolytic enzyme aldolase A promotes pancreatic cancer progression by NF-κB activation

Abstract

The function of cytosolic aldolase A (ALDOA) in glycolysis is well recognized. However, the cytosol-to-nucleus redistribution of ALDOA and its nuclear function is poorly understood. Here, we uncover inflammatory factor-stimulated nuclear function of ALDOA in augmenting pancreatic carcinogenesis by activating NF-κB signaling in a ubiquitination-dependent manner. TNF-α-triggered K11- and K29-linked ubiquitination of ALDOA at Lys200 promotes its interaction with RelA/p65 and facilitates importin-β-dependent nuclear translocation, establishing a positive feedback regulation in the tumor microenvironment by elevating the TNF-α expression in pancreatic ductal adenocarcinoma (PDAC). USP4 is identified as a negative regulator that deubiquitinates ALDOA. Instead of broadly targeting ALDOA, which causes glycolysis impairment, the specific elimination of ALDOA ubiquitination enhances chemosensitivity and the synergistic effect of chemotherapy combined with p65-specific anti-inflammatory therapy by selectively suppressing inflammation-induced proliferation in cancer cells. Collectively, we unveil the multifaceted mechanisms by which ALDOA promotes PDAC carcinogenesis, from metabolic to gene regulatory perspectives, providing potential therapies combatting cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALDOA promotes inflammation and tumor progression in PDAC.
Fig. 2: ALDOA interacts with RelA/p65 and upregulates NF-κB signaling activation in response to TNF-α stimulation.
Fig. 3: K11- and K29-linked ubiquitination of ALDOA increases its interaction with p65 in response to TNF-α.
Fig. 4: ALDOA promotes TNF-α-stimulated NF-κB activation in a ubiquitination-dependent manner.
Fig. 5: USP4 deubiquitinates ALDOA and attenuates ALDOA-mediated RelA/p65 activation.
Fig. 6: Suppressed ALDOA-K200 ubiquitination hinders p65-mediated oncogenic processes in PDAC cells.
Fig. 7: The impaired ALDOA-p65 signaling axis attenuates tumor growth in a murine model.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD059292 and 10.6019/PXD059292, PXD059293 and 10.6019/PXD059293.

References

  1. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20:436–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46.

    Article  PubMed  CAS  Google Scholar 

  3. Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab. 2021;3:21–32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.

    Article  PubMed  Google Scholar 

  5. Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 2019;10:3763.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Campbell SL, Wellen KE. Metabolic Signaling to the Nucleus in Cancer. Mol Cell. 2018;71:398–408.

    Article  PubMed  CAS  Google Scholar 

  7. Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab. 2020;2:1190–203.

    Article  PubMed  CAS  Google Scholar 

  8. Cluntun AA, Huang H, Dai L, Liu X, Zhao Y, Locasale JW. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 2015;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cai L, Sutter Benjamin M, Li B, Tu Benjamin P. Acetyl-CoA Induces Cell Growth and Proliferation by Promoting the Acetylation of Histones at Growth Genes. Mol Cell. 2011;42:426–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab. 2021;33:33–50.

    Article  PubMed  CAS  Google Scholar 

  11. Sivanand S, Rhoades S, Jiang Q, Lee JV, Benci J, Zhang J, et al. Nuclear Acetyl-CoA Production by ACLY Promotes Homologous Recombination. Mol Cell. 2017;67:252–65.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee J-H, et al. Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. Mol Cell. 2017;66:684–97.e9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pardo-Lorente N, Gkanogiannis A, Cozzuto L, Gañez Zapater A, Espinar L, Ghose R, et al. Nuclear localization of MTHFD2 is required for correct mitosis progression. Nat Commun. 2024;15:9529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang Z, Li M, Jiang H, Luo S, Shao F, Xia Y, et al. Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth. Nat Cell Biol. 2022;24:1655–65.

    Article  PubMed  CAS  Google Scholar 

  15. Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med. 2018;50:1–16.

    Article  PubMed  CAS  Google Scholar 

  16. Pan C, Li B, Simon MC. Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell. 2021;81:3760–74.

    Article  PubMed  CAS  Google Scholar 

  17. Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription. Trends Biochem Sci. 2016;41:712–30.

    Article  PubMed  CAS  Google Scholar 

  18. Chang YC, Yang YC, Tien CP, Yang CJ, Hsiao M. Roles of Aldolase Family Genes in Human Cancers and Diseases. Trends Endocrinol Metab. 2018;29:549–59.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang C, Hawley SA, Zong Y, Li M, Wang Z, Gray A, et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017;548:112–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mamczur P, Gamian A, Kolodziej J, Dziegiel P, Rakus D. Nuclear localization of aldolase A correlates with cell proliferation. Biochim Biophys Acta Mol Cell Res. 2013;1833:2812–22.

    Article  CAS  Google Scholar 

  21. Kusakabe T, Motoki K, Hori K. Mode of Interactions of Human Aldolase Isozymes with Cytoskeletons. Arch Biochem Biophys. 1997;344:184–93.

    Article  PubMed  CAS  Google Scholar 

  22. Fu H, Gao H, Qi X, Zhao L, Wu D, Bai Y, et al. Aldolase A promotes proliferation and G1/S transition via the EGFR/MAPK pathway in non-small cell lung cancer. Cancer Commun. 2018;38:18.

    Article  Google Scholar 

  23. Gizak A, Wiśniewski J, Heron P, Mamczur P, Sygusch J, Rakus D. Targeting a moonlighting function of aldolase induces apoptosis in cancer cells. Cell Death Dis. 2019;10:712.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of-Function Genetic Screening Identifies Aldolase A as an Essential Driver for Liver Cancer Cell Growth Under Hypoxia. Hepatology. 2021;74:1461–79.

    Article  PubMed  CAS  Google Scholar 

  25. Song J, Li H, Liu Y, Li X, Shi Q, Lei Q-Y, et al. Aldolase A Accelerates Cancer Progression by Modulating mRNA Translation and Protein Biosynthesis via Noncanonical Mechanisms. Adv Sci. 2023;10:2302425.

    Article  CAS  Google Scholar 

  26. Wan N, Wang N, Yu S, Zhang H, Tang S, Wang D, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat Methods. 2022;19:854–64.

    Article  PubMed  CAS  Google Scholar 

  27. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma. Cell. 2019;179:561–77.e22.

    Article  PubMed  CAS  Google Scholar 

  28. Cha Y, Han M-J, Cha H-J, Zoldan J, Burkart A, Jung JH, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c–SIRT2 axis. Nat Cell Biol. 2017;19:445–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Qin W, Qin K, Zhang Y, Jia W, Chen Y, Cheng B, et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol. 2019;15:983–91.

    Article  PubMed  CAS  Google Scholar 

  30. Lin ZP, Gan G, Xu X, Wen C, Ding X, Chen XY, et al. Comprehensive PTM profiling with SCASP-PTM uncovers mechanisms of p62 degradation and ALDOA-mediated tumor progression. Cell Rep. 2025;44:115500.

    Article  PubMed  CAS  Google Scholar 

  31. Park W, Chawla A, O’Reilly EM. Pancreatic Cancer: A Review. JAMA. 2021;326:851–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Engle DD, Tiriac H, Rivera KD, Pommier A, Whalen S, Oni TE, et al. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science. 2019;364:1156–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Padoan A, Plebani M, Basso D. Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. Int J Mol Sci. 2019;20:676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Del Poggetto E, Ho I-L, Balestrieri C, Yen E-Y, Zhang S, Citron F, et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science. 2021;373:eabj0486.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yuan C, Morales-Oyarvide V, Khalaf N, Perez K, Tabung FK, Ho GYF, et al. Prediagnostic Inflammation and Pancreatic Cancer Survival. J Natl Cancer Inst. 2021;113:1186–93.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Perkins ND. The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 2012;12:121–32.

    Article  PubMed  CAS  Google Scholar 

  37. Chang YC, Chan YC, Chang WM, Lin YF, Yang CJ, Su CY, et al. Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression. Cancer Lett. 2017;403:28–36.

    Article  PubMed  CAS  Google Scholar 

  38. Lin J, Xia L, Oyang L, Liang J, Tan S, Wu N, et al. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene. 2022;41:1024–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xu M, Xi S, Li H, Xia Y, Mei G, Cheng Z. Prognosis significance and potential association between ALDOA and AKT expression in colorectal cancer. Sci Rep. 2024;14:6488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Snaebjornsson MT, Poeller P, Komkova D, Röhrig F, Schlicker L, Winkelkotte AM, et al. Targeting aldolase A in hepatocellular carcinoma leads to imbalanced glycolysis and energy stress due to uncontrolled FBP accumulation. Nat Metab. 2025;7:348–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ronai ZE, Robinson RC, Rutberg SE, Lazarus P, Sardana MK. Aldolase-DNA interactions in a SEWA cell system. Biochim Biophys Acta. 1992;1130:20–8.

    Article  PubMed  CAS  Google Scholar 

  42. Adesso L, Calabretta S, Barbagallo F, Capurso G, Pilozzi E, Geremia R, et al. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene. 2013;32:2848–57.

    Article  PubMed  CAS  Google Scholar 

  43. Genkinger JM, Spiegelman D, Anderson KE, Bergkvist L, Bernstein L, van den Brandt PA, et al. Alcohol Intake and Pancreatic Cancer Risk: A Pooled Analysis of Fourteen Cohort Studies. Cancer Epidemiol Biomark Prev. 2009;18:765–76.

    Article  CAS  Google Scholar 

  44. Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer — clinical challenges and opportunities. Nat Rev Clin Oncol. 2020;17:527–40.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  PubMed  CAS  Google Scholar 

  46. Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, von Strandmann EP, et al. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci. 2020;21:7307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang T, Sun L, Hao Y, Suo C, Shen S, Wei H, et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat Cancer. 2022;3:75–89.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Sampathkumar A, Kerber SM-L, Swart C, Hille C, Seerangan K, et al. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nat Commun. 2020;11:4509.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 2015;34:1349–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Thomas GE, Egan G, García-Prat L, Botham A, Voisin V, Patel PS, et al. The metabolic enzyme hexokinase 2 localizes to the nucleus in AML and normal haematopoietic stem and progenitor cells to maintain stemness. Nat Cell Biol. 2022;24:872–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liang P, Zhang H, Wang G, Li S, Cong S, Luo Y, et al. KPNB1, XPO7 and IPO8 Mediate the Translocation of NF-κB/p65 into the Nucleus. Traffic. 2013;14:1132–43.

    Article  PubMed  CAS  Google Scholar 

  52. Li Y, Dammer EB, Gao Y, Lan Q, Villamil MA, Duong DM, et al. Proteomics Links Ubiquitin Chain Topology Change to Transcription Factor Activation. Mol Cell. 2019;76:126–37.e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Boughton AJ, Krueger S, Fushman D. Branching via K11 and K48 Bestows Ubiquitin Chains with a Unique Interdomain Interface and Enhanced Affinity for Proteasomal Subunit Rpn1. Structure. 2020;28:29–43.e6.

    Article  PubMed  CAS  Google Scholar 

  54. Yau RG, Doerner K, Castellanos ER, Haakonsen DL, Werner A, Wang N, et al. Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control. Cell. 2017;171:918–33.e20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Paul A, Wang B. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage. Mol Cell. 2017;66:458–72.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhao J, Cai B, Shao Z, Zhang L, Zheng Y, Ma C, et al. TRIM26 positively regulates the inflammatory immune response through K11-linked ubiquitination of TAB1. Cell Death Differ. 2021;28:3077–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kaiho-Soma A, Akizuki Y, Igarashi K, Endo A, Shoda T, Kawase Y, et al. TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Mol Cell. 2021;81:1411–24.e7.

    Article  PubMed  CAS  Google Scholar 

  58. Nucifora FC, Nucifora LG, Ng C-H, Arbez N, Guo Y, Roby E, et al. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nat Commun. 2016;7:11792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chen Y-H, Huang T-Y, Lin Y-T, Lin S-Y, Li W-H, Hsiao H-J, et al. VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism. Nat Commun. 2021;12:1322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L, et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 2010;29:4198–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Gao P, Ma X, Yuan M, Yi Y, Liu G, Wen M, et al. E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Nat Commun. 2021;12:1194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang ZD, Li HX, Gan H, Tang Z, Guo YY, Yao SQ, et al. RNF115 Inhibits the Post-ER Trafficking of TLRs and TLRs-Mediated Immune Responses by Catalyzing K11-Linked Ubiquitination of RAB1A and RAB13. Adv Sci. 2022;9:e2105391.

    Article  Google Scholar 

  63. Feng X, Jia Y, Zhang Y, Ma F, Zhu Y, Hong X, et al. Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy. 2019;15:1130–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Xie W, Jin S, Wu Y, Xian H, Tian S, Liu D-A, et al. Auto-ubiquitination of NEDD4-1 Recruits USP13 to Facilitate Autophagy through Deubiquitinating VPS34. Cell Rep. 2020;30:2807–19.e4.

    Article  PubMed  CAS  Google Scholar 

  65. Hu H, Sun SC. Ubiquitin signaling in immune responses. Cell Res. 2016;26:457–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhu D, Xu R, Huang X, Tang Z, Tian Y, Zhang J, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ. 2021;28:1773–89.

    Article  PubMed  CAS  Google Scholar 

  67. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure. 2020;28:1071–81.e3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022;50:W739–W43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Prof. Daming Gao from Shanghai Institute of Biochemistry and Cell Biology for providing Flag-ALDOA plasmid, Prof. Chensong Zhang from Xiamen University for providing sg-ALDOA plasmids, Prof. Lingqiang Zhang from Academy of Military Science for providing HA-ubiquitin-mutated plasmids, Prof. Danying Chen from Peking University for providing luciferase reporter plasmids, Prof. Jinfang Zhang from Wuhan University for providing the Myc-tagged MARCH1-11 plasmids, Prof. Chengqi Yi from Peking University for providing ALDOB expressing plasmid, Prof. Jianguo Ji from Peking University for providing MiaPaCa-2 cell line, Prof. Jihui Hao from Tianjin Medical University for providing SW1990 cell line, Prof. Peng Du from Peking University for providing PANC-1 cell line, Prof. Xianghong Yang from Shengjing Hospital of China Medical University for providing HPDE6C7 cell line, Prof. Deng Pan from Tsinghua University for providing Panc02 cell line and Prof. Zhe Zhang from Peking University for providing HEK293F cell line. We thank Dr. Shichen Geng from Peking University for instructing the construction of site-mutation cell lines. We thank the National Center for Protein Sciences and the Core Facilities of Life Sciences at Peking University, particularly Qi Zhang, Wenling Gao, Siying Qin, Liying Du, Huan Yang, Jia Luo, Feifei Cheng, and Guilan Li for technical assistance. We also appreciate Biorender for its easy-to-use platform that helped illustrate our research findings (agreement no. ON28RU2H3S).

Funding

This work was supported by National Key R&D Program of China (2024YFA1306200 and 2022YFA1302803), and the National Natural Science Foundation of China (82130081 and 32270756).

Author information

Authors and Affiliations

Authors

Contributions

S Zhou and X Zheng designed this study. S Zhou conducted the experiments. S Zhou analyzed the data and wrote the manuscript. Y Li, C Wang and Y Zhao helped the mice xenograft assay. X Zheng supervised this study and wrote the manuscript.

Corresponding author

Correspondence to Xiaofeng Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal experiments were approved by the Ethics Committee of Peking University (IACUC No. LSC-ZhengXF-1). All animal handling and experimental protocols strictly adhered to the ethical principles outlined in the Declaration of Helsinki, as well as relevant national guidelines and regulations. The human tissue arrays were purchased from Shanghai Superchip Company Ltd. with the ethics approval number (SHXC2021YF01).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Li, Y., Wang, C. et al. K11- and K29-ubiquitination-mediated nuclear translocation of glycolytic enzyme aldolase A promotes pancreatic cancer progression by NF-κB activation. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01592-7

Search

Quick links