Table 2 Possible values of M and relative states. We consider ε2 < 0
m1 | −1 | +1 | −1 | +1 |
|---|---|---|---|---|
m2 | −1 | −1 | +1 | +1 |
M− | 0 | +2 | −2 | 0 |
States if ε1 < 0 | \(\left\vert gg\right\rangle \left\vert 0\right\rangle\) | \(\left\vert eg\right\rangle \left\vert -\alpha \right\rangle\) | \(\left\vert ge\right\rangle \left\vert+\alpha \right\rangle\) | \(\left\vert ee\right\rangle \left\vert 0\right\rangle\) |
M+ | +2 | 0 | 0 | −2 |
States if ε1 > 0 | \(\left\vert gg\right\rangle \left\vert+\alpha \right\rangle\) | \(\left\vert eg\right\rangle \left\vert 0\right\rangle\) | \(\left\vert ge\right\rangle \left\vert 0\right\rangle\) | \(\left\vert ee\right\rangle \left\vert -\alpha \right\rangle\) |