Table 2 AI and ML algorithms and platforms used in reviewed studies

From: Scoping review of artificial intelligence via mobile technology and social media for health in Africa

Authors

Algorithm/Approach [Specific Techniques]

Mediums

Platforms

Mobile use

Parham, G.P. et al.65

DL [CNN]

 

Camera

Movahedi Nia, Z. et al.66

DL & Topic Modeling [RoBERTa]

Twitter

 

Maturana, C.R. et al.67

DL [YOLOv5x, Faster R-CNN, SSD, RetinaNet]

 

Microscope

Kabukye, J.K. et al.68

DL [Unspecified]

 

Telemedicine System

Turon, G. et al.69

SL [Tree-based Machine Learning and AutoML]

  

Fredriksson, A. et al.70

SL [Multivariate logistic regression, Logistic model using LASSO (Least Absolute Shrinkage and Selection Operator) regularization, Random Forest, Artificial neural network]

 

Data collection

Ogbuokiri, B. et al.71

SL [KNN, SVM, Logistic regression, VADER (Valence Aware Dictionary for Sentiment Reasoning), Decision tree]

Twitter

 

Dacal, E. et al.72

DL [FasterRCNN-ResNet50, SSD-MobileNet]

 

Microscope

Gbashi, S. et al.73

Computational linguistics models [TextBlob, Valence Aware Dictionary, Sentiment Reasoner, World2Vec combined with a bidirectional long short-term memory neural network]

Google News, Twitter

 

Bruzelius, E. et al.74

DL [TensorBox]

 

Mapping of images

Schaible, B. J. et al.17

Topic modeling [Latent Dirichlet Allocation]

Twitter

 

Kraemer, M.U.G. et al.75

SL [Logistic model, Boosted regression tree]

 

Data collection and mobility tracking

Odlum, M. & Yoon, S. 18

Natural language processing and content analysis [K-means algorithm]

Twitter

 

Rosado, L., Da Costa, J.M.C., Elias, D. & Cardoso, J.S. 76

SL [SVM]

 

Data collection and image processing

Fast, S. et al.77

SL [Random Forest]

Social media and News

 

Oyebode, O. & Orji, R. 78

SL [Binarized Naive Bayes]

Nairaland

 

Zhao, O.S. et al.79

DL [CNNs]

 

Screening for malaria

Oladeji, O. et al.80

SL [SVM, Random Forest, Gradient boosting]

Google

 

Yang, A. et al.81

Artificial neural network [Kankanet]

 

Microscope

Mejía, K., Viboud, C. & Santillana, M. 82

SL [AutoRegression and Regression on Google query volumes]

Google

 

Aiken, E. L. et al.83

SL [AutoRegression and Regression on Google query volumes]

Google

 

Nsoesie, E. O., Oladeji, O., Abah, A. S. A. & Ndeffo-Mbah, M. L. 84

SL [RF regression, and SVR]

Google

 

Abebe, R. et al.62

SL] and Topic Modeling[Logistic regression, Latent Dirichlet Allocation]

Bing

 

Olukanmi, S. O., Nelwamondo, F.V., & Nwulu, N. I. 85

DL & Regression [Long Short-term Memory, Feedforward Neural Networks (FNN), Elastic Net, SVM, Multiple Linear Regression]

Google

 

Tudor C. & Sova R. 86

SL [Neural Network Autoregression]

Google

 

Adamu, H. et al.87

SL [Multinomial Naïve Bayes, SVM, Random Forest, Logistics Regression, KNN, Decision Tree]

Twitter

 

Majam, M. et al.88

SL [Logistic Generalized Linear Models, Bayesian Generalized Linear Models, Lasso Regression, SVMs, Decision Trees, and Gradient Boosted Decision Trees]

 

Data collection via survey

Maffioli, E. M. & Gonzalez, R. 89

SL [Random Forest Regression, Least Absolute Shrinkage and Selection Operator (LASSO)]

 

Data collection via survey

Potgieter, A. et al. 90

UnSL [Principal Component Analysis, Hierarchical Clustering]

Facebook

 
  1. SL Supervised learning, UnSL Unsupervised learning, KNN K-Nearest neighbour, SVM Support vector machine, DL Deep learning, CNN Convolutional neural network, SVR Support vector regression
  2. - Mobile Phone, - Social Media, - Accessible via computer or mobile phones.