Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Tau condensation on DNA mediates microtubule attachment suggesting a mitotic role for centromere-localized tau
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 January 2026

Tau condensation on DNA mediates microtubule attachment suggesting a mitotic role for centromere-localized tau

  • Celine Park1 na1,
  • Jaehun Jung  ORCID: orcid.org/0000-0002-3897-29001 na1,
  • Yuri Hong  ORCID: orcid.org/0000-0001-9250-89682 na1 nAff6,
  • Haeun Yoo1,
  • Keunsang Yang1,
  • Jaehyeon Shin  ORCID: orcid.org/0009-0003-7141-23601,
  • Minsik Kim1,
  • Chan Lim  ORCID: orcid.org/0009-0000-6724-31521,
  • Ayoung Jeong  ORCID: orcid.org/0009-0002-6440-19651,
  • Seokyun Hong  ORCID: orcid.org/0009-0009-2854-47751,
  • Jun Young Baek  ORCID: orcid.org/0009-0008-6496-952X1,
  • Sang-Hyun Rah1,
  • Chaelin Lee-Eom  ORCID: orcid.org/0009-0002-7627-94771,
  • Minseok Seo3,
  • Yoori Kim3,4,
  • Jae-Hyung Jeon1,
  • Jong-Bong Lee  ORCID: orcid.org/0000-0003-2235-19121,2,
  • Dong Soo Hwang  ORCID: orcid.org/0000-0002-2487-22552,5 &
  • …
  • Min Ju Shon  ORCID: orcid.org/0000-0002-0333-11501,2 

Nature Communications , Article number:  (2026) Cite this article

  • 2688 Accesses

  • 12 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Mitosis
  • Mitotic spindle
  • Single-molecule biophysics

Abstract

Tau protein, traditionally recognized for stabilizing microtubules and forming pathological aggregates, has recently been observed to form condensates in various contexts. While its condensation with RNA has been well studied, the interaction between tau and DNA, along with its biological significance, remains less explored. Here, using single-molecule experiments, we find that tau binds stably to naked DNA at nanomolar concentrations, leading to the local co-condensation of tau and DNA. These tau condensates on DNA can also interface with microtubules, leveraging tau’s known role in promoting microtubule growth and organization. The dynamic nature of these condensates facilitates the remodeling of the DNA–microtubule assembly. Interestingly, phosphorylated tau and nucleosomal DNA exhibit distinct capacities to form condensates and recruit microtubules. Furthermore, imaging of mitotic cells with endogenous or exogenous tau reveals its localization to centromeres, engaging mitotic spindles, whereas expression of phosphomimetic tau mutants (T231D/S235D and S262D) causes defects in chromosome alignment. Building on these observations, we speculate that tau may play a role in mitosis, where tau clusters facilitate the early registration of mitotic spindles to chromosomes before kinetochore-mediated attachment. We also discuss the implications of this model in conditions where abnormal cell cycle re-entry and tau activity may disrupt cell division.

Similar content being viewed by others

Structural insights into human CCAN complex assembled onto DNA

Article Open access 09 September 2022

Dynamic self-assembly of compartmentalized DNA nanotubes

Article Open access 11 June 2021

Stoichiometric 14-3-3ζ binding promotes phospho-Tau microtubule dissociation and reduces aggregation and condensation

Article Open access 31 July 2025

Data availability

The RNA sequencing data are publicly available via NCBI BioProject accession number PRJNA1173100 (https://www.ncbi.nlm.nih.gov/sra/SRX26385062[accn]). Source data are provided as a Source Data file. All additional raw data files, including TIRF/confocal micrographs, are available from the corresponding author on request. Source data are provided with this paper.

Code availability

The code used for data analysis is available both at Github (https://github.com/ShonLab) and Zenodo (https://doi.org/10.5281/zenodo.17797566).

References

  1. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y. & Kirschner, M. W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. 72, 1858–1862 (1975).

    Google Scholar 

  2. Kadavath, H. et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc. Natl. Acad. Sci. 112, 7501–7506 (2015).

    Google Scholar 

  3. Hernández-Vega, A. et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 20, 2304–2312 (2017).

    Google Scholar 

  4. Zhang, X. et al. RNA stores tau reversibly in complex coacervates. PLOS Biol. 15, e2002183 (2017).

    Google Scholar 

  5. Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017).

    Google Scholar 

  6. Wegmann, S. et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).

    Google Scholar 

  7. Lee-Eom, C., Jung, J., Park, C. & Shon, M. J. Structuring role of Tau-Tubulin co-condensates in early microtubule organization. Preprint at https://doi.org/10.1101/2024.11.04.621946 (2024).

  8. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Google Scholar 

  9. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Google Scholar 

  10. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 22–35 (2016).

    Google Scholar 

  11. Rai, S. K., Savastano, A., Singh, P., Mukhopadhyay, S. & Zweckstetter, M. Liquid–liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci. 30, 1294–1314 (2021).

    Google Scholar 

  12. Mukrasch, M. D. et al. Structural polymorphism of 441-residue tau at single residue resolution. PLOS Biol. 7, e1000034 (2009).

    Google Scholar 

  13. Lin, Y. et al. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 8, e42571 (2019).

    Google Scholar 

  14. Ash, P. E. A. et al. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc. Natl. Acad. Sci. 118, e2014188118 (2021).

    Google Scholar 

  15. Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E.-M. & Mandelkow, E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 399, 344–349 (1996).

    Google Scholar 

  16. Lin, Y. et al. Liquid-liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of Tau. J. Mol. Biol. 433, 166731 (2021).

    Google Scholar 

  17. Hochmair, J. et al. Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates. EMBO J. 41, e108882 (2022).

    Google Scholar 

  18. Wiche, G., Corces, V. G. & Avila, J. Preferential binding of hog brain microtubule-associated proteins to mouse satellite versus bulk DNA preparations. Nature 273, 403–405 (1978).

    Google Scholar 

  19. Hua, Q. et al. Microtubule associated protein tau binds to double-stranded but not single-stranded DNA. Cell. Mol. Life Sci. CMLS 60, 413–421 (2003).

    Google Scholar 

  20. Qu, M. et al. Neuronal tau induces DNA conformational changes observed by atomic force microscopy. NeuroReport 15, 2723 (2004).

    Google Scholar 

  21. Wei, Y. et al. Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation. PLOS ONE 3, e2600 (2008).

    Google Scholar 

  22. Camero, S. et al. Thermodynamics of the Interaction between Alzheimer’s Disease Related Tau Protein and DNA. PLOS ONE 9, e104690 (2014).

    Google Scholar 

  23. Camero, S. et al. Tau protein provides DNA with Thermodynamic and structural features which are similar to those found in histone-DNA complex. J. Alzheimers Dis. 39, 649–660 (2014).

    Google Scholar 

  24. Qi, H. et al. Nuclear magnetic resonance spectroscopy characterization of interaction of tau with DNA and its regulation by phosphorylation. Biochemistry 54, 1525–1533 (2015).

    Google Scholar 

  25. Abasi, L. S. et al. Phosphorylation regulates tau’s phase separation behavior and interactions with chromatin. Commun. Biol. 7, 1–17 (2024).

    Google Scholar 

  26. Sultan, A. et al. Nuclear Tau, a Key Player in Neuronal DNA Protection*. J. Biol. Chem. 286, 4566–4575 (2011).

    Google Scholar 

  27. Bukar Maina, M., Al-Hilaly, Y. K. & Serpell, L. C. Nuclear Tau and Its Potential Role in Alzheimer’s Disease. Biomolecules 6, 9 (2016).

    Google Scholar 

  28. Antón-Fernández, A., Vallés-Saiz, L., Avila, J. & Hernández, F. Neuronal nuclear tau and neurodegeneration. Neuroscience 518, 178–184 (2023).

    Google Scholar 

  29. Kirschner, M. & Mitchison, T. Beyond self-assembly: From microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Google Scholar 

  30. Kanaan, N. M., Hamel, C., Grabinski, T. & Combs, B. Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun. 11, 2809 (2020).

    Google Scholar 

  31. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Google Scholar 

  32. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e13 (2018).

    Google Scholar 

  33. Quail, T. et al. Force generation by protein–DNA co-condensation. Nat. Phys. 17, 1007–1012 (2021).

    Google Scholar 

  34. Bell, N. A. W. et al. Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. Sci. Adv. 7, eabf3641 (2021).

    Google Scholar 

  35. Nguyen, T. et al. Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA. Nat. Commun. 13, 3988 (2022).

    Google Scholar 

  36. Renger, R. et al. Co-condensation of proteins with single- and double-stranded DNA. Proc. Natl. Acad. Sci. 119, e2107871119 (2022).

    Google Scholar 

  37. Chappidi, N. et al. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell 187, 945–961.e18 (2024).

    Google Scholar 

  38. Kim, D. et al. DNA skybridge: 3D structure producing a light sheet for high-throughput single-molecule imaging. Nucleic Acids Res 47, e107 (2019).

    Google Scholar 

  39. Sjöberg, M. K., Shestakova, E., Mansuroglu, Z., Maccioni, R. B. & Bonnefoy, E. Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization. J. Cell Sci. 119, 2025–2034 (2006).

    Google Scholar 

  40. Jung, J., Kim, S., Rah, S.-H., Lee, J. & Shon, M. J. Chapter Five - Force-fluorescence setup for observing protein–DNA interactions under load. in Methods in Enzymology (eds Ju Shon, M. & Yoon, T.-Y.) 694, 137–165 (Academic Press, 2024).

  41. Pavin, N. & Tolić-Nørrelykke, I. M. Swinging a sword: how microtubules search for their targets. Syst. Synth. Biol. 8, 179–186 (2014).

    Google Scholar 

  42. Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A. & Hof, P. R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders1. Brain Res. Rev. 33, 95–130 (2000).

    Google Scholar 

  43. Köpke, E. et al. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer's disease. J. Biol. Chem. 268, 24374–24384 (1993).

    Google Scholar 

  44. Liu, F. et al. PKA modulates GSK-3β- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett. 580, 6269–6274 (2006).

    Google Scholar 

  45. Scott, C. W. et al. Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly. J. Biol. Chem. 268, 1166–1173 (1993).

    Google Scholar 

  46. Mansuroglu, Z. et al. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci. Rep. 6, 33047 (2016).

    Google Scholar 

  47. Wegmann, S., Biernat, J. & Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 69, 131–138 (2021).

    Google Scholar 

  48. Hasegawa, M. et al. Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. J. Biol. Chem. 267, 17047–17054 (1992).

    Google Scholar 

  49. Biernat, J., Gustke, N., Drewes, G., Mandelkow, E. - & Mandelkow, E. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: Distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11, 153–163 (1993).

    Google Scholar 

  50. Sengupta, A. et al. Phosphorylation of Tau at Both Thr 231 and Ser 262 Is Required for Maximal Inhibition of Its Binding to Microtubules. Arch. Biochem. Biophys. 357, 299–309 (1998).

    Google Scholar 

  51. Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713.e13 (2020).

    Google Scholar 

  52. Léger, J., Kempf, M., Lee, G. & Brandt, R. Conversion of serine to aspartate imitates phosphorylation-induced changes in the structure and function of microtubule-associated Protein Tau *. J. Biol. Chem. 272, 8441–8446 (1997).

    Google Scholar 

  53. Alonso, A. D. et al. Phosphorylation of Tau at Thr212, Thr231, and Ser262 Combined Causes Neurodegeneration *. J. Biol. Chem. 285, 30851–30860 (2010).

    Google Scholar 

  54. Song, L., Oseid, D. E., Wells, E. A. & Robinson, A. S. The Interplay between GSK3β and Tau Ser262 Phosphorylation during the Progression of Tau Pathology. Int. J. Mol. Sci. 23, 11610 (2022).

    Google Scholar 

  55. Boyko, S. & Surewicz, W. K. Domain-specific modulatory effects of phosphomimetic substitutions on liquid-liquid phase separation of tau protein. J. Biol. Chem. 299, 104722 (2023).

    Google Scholar 

  56. Boyko, S., Qi, X., Chen, T.-H., Surewicz, K. & Surewicz, W. K. Liquid–liquid phase separation of tau protein: The crucial role of electrostatic interactions. J. Biol. Chem. 294, 11054–11059 (2019).

    Google Scholar 

  57. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    Google Scholar 

  58. Binder, L. I., Frankfurter, A. & Rebhun, L. I. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 101, 1371–1378 (1985).

    Google Scholar 

  59. Khatoon, S., Grundke-Iqbal, I. & Iqbal, K. Brain levels of microtubule-associated protein τ are elevated in alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein. J. Neurochem. 59, 750–753 (1992).

    Google Scholar 

  60. Kanaan, N. M. & Grabinski, T. Neuronal and glial distribution of tau protein in the adult rat and monkey. Front. Mol. Neurosci. 14, 607303 (2021).

  61. Greenwood, J. A. & Johnson, G. V. W. Localization and in Situ Phosphorylation State of Nuclear Tau. Exp. Cell Res. 220, 332–337 (1995).

    Google Scholar 

  62. Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).

    Google Scholar 

  63. Setru, S. U. et al. A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. Nat. Phys. 17, 493–498 (2021).

    Google Scholar 

  64. Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014).

    Google Scholar 

  65. Rico, T. et al. Tau stabilizes chromatin compaction. Front. Cell Dev. Biol. 9, (2021).

  66. Roulland, Y. et al. The flexible ends of CENP-a nucleosome are required for mitotic fidelity. Mol. Cell 63, 674–685 (2016).

    Google Scholar 

  67. Alquezar, C., Arya, S. & Kao, A. W. Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front. Neurol. 11, 595532 (2021).

  68. Baumann, K., Mandelkow, E.-M., Biernat, J., Piwnica-Worms, H. & Mandelkow, E. Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336, 417–424 (1993).

    Google Scholar 

  69. Illenberger, S. et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for alzheimer’s disease. Mol. Biol. Cell 9, 1495–1512 (1998).

    Google Scholar 

  70. Hamdane, M. et al. Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex *. J. Biol. Chem. 278, 34026–34034 (2003).

    Google Scholar 

  71. Flores-Rodríguez, P. et al. Phospho-tau protein expression in the cell cycle of SH-SY5Y neuroblastoma cells: a morphological study. J. Alzheimers Dis. 71, 631–645 (2019).

    Google Scholar 

  72. Itoh, G. et al. Lateral attachment of kinetochores to microtubules is enriched in prometaphase rosette and facilitates chromosome alignment and bi-orientation establishment. Sci. Rep. 8, 3888 (2018).

    Google Scholar 

  73. Tanaka, K. Regulatory mechanisms of kinetochore–microtubule interaction in mitosis. Cell. Mol. Life Sci. 70, 559–579 (2013).

    Google Scholar 

  74. Villasante, A., Corces, V. G., Manso-Martínez, R. & Avila, J. Binding of microtubule protein to DNA and chromatin: possibility of simultaneous linkage of microtubule to nucleic acid and assembly of the microtubule structure. Nucleic Acids Res 9, 895–908 (1981).

    Google Scholar 

  75. Wollman, R. et al. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005).

    Google Scholar 

  76. David, A. F. et al. Augmin accumulation on long-lived microtubules drives amplification and kinetochore-directed growth. J. Cell Biol. 218, 2150–2168 (2019).

    Google Scholar 

  77. Renda, F. et al. Non-centrosomal microtubules at kinetochores promote rapid chromosome biorientation during mitosis in human cells. Curr. Biol. 32, 1049–1063.e4 (2022).

    Google Scholar 

  78. Houck, A. L., Hernández, F. & Ávila, J. A simple model to study tau pathology. J. Exp. Neurosci. 10, S25100 (2016). JEN.

    Google Scholar 

  79. Bougé, A.-L. & Parmentier, M.-L. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis. Model. Mech. 9, 307–319 (2016).

    Google Scholar 

  80. Malmanche, N. et al. Developmental expression of 4-repeat-tau induces neuronal aneuploidy in Drosophila tauopathy models. Sci. Rep. 7, 40764 (2017).

    Google Scholar 

  81. Rossi, G. et al. A new function of microtubule-associated protein tau: Involvement in chromosome stability. Cell Cycle 7, 1788–1794 (2008).

    Google Scholar 

  82. Violet, M. et al. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front. Cell. Neurosci. 8, 84 (2014).

  83. Mueller, R. L. et al. Tau: a signaling hub protein. Front. Mol. Neurosci. 14, 647054 (2021).

  84. Andorfer, C. et al. Cell-Cycle Reentry and Cell Death in Transgenic Mice Expressing Nonmutant Human Tau Isoforms. J. Neurosci. 25, 5446–5454 (2005).

    Google Scholar 

  85. Koseoglu, M. M., Norambuena, A., Sharlow, E. R., Lazo, J. S. & Bloom, G. S. Aberrant Neuronal Cell Cycle Re-Entry: The Pathological Confluence of Alzheimer’s Disease and Brain Insulin Resistance, and Its Relation to Cancer. J. Alzheimers Dis. 67, 1–11 (2019).

    Google Scholar 

  86. Frost, B. Alzheimer’s disease and related tauopathies: disorders of disrupted neuronal identity. Trends Neurosci. 46, 797–813 (2023).

    Google Scholar 

  87. Mu, Y. & Gage, F. H. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener. 6, 85 (2011).

    Google Scholar 

  88. Salta, E. et al. Adult hippocampal neurogenesis in Alzheimer’s disease: a roadmap to clinical relevance. Cell Stem Cell 30, 120–136 (2023).

    Google Scholar 

  89. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer's cytoskeletal pathology. Proc. Natl. Acad. Sci. 83, 4913–4917 (1986).

    Google Scholar 

  90. Alonso, A. et al. Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. 98, 6923–6928 (2001).

    Google Scholar 

  91. Schroeder, C. et al. Aberrant expression of the microtubule-associated protein tau is an independent prognostic feature in prostate cancer. BMC Cancer 19, 193 (2019).

    Google Scholar 

  92. Gargini, R., Segura-Collar, B. & Sánchez-Gómez, P. Novel functions of the neurodegenerative-related gene tau in cancer. Front. Aging Neurosci. 11, 231 (2019).

  93. Clementi, L. et al. Mitotic phosphorylation of Tau/MAPT modulates cell cycle progression in prostate cancer cells. J. Cancer Res. Clin. Oncol. 149, 7689–7701 (2023).

    Google Scholar 

  94. Koo, D.-H. et al. Tau and PTEN status as predictive markers for response to trastuzumab and paclitaxel in patients with HER2-positive breast cancer. Tumor Biol. 36, 5865–5871 (2015).

    Google Scholar 

  95. Derisbourg, M. et al. Role of the Tau N-terminal region in microtubule stabilization revealed by newendogenous truncated forms. Sci. Rep. 5, 9659 (2015).

    Google Scholar 

  96. Boyko, S., Surewicz, K. & Surewicz, W. K. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation. Proc. Natl. Acad. Sci. 117, 31882–31890 (2020).

    Google Scholar 

  97. Dujardin, S. et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat. Med. 26, 1256–1263 (2020).

    Google Scholar 

  98. Lee, H.-W. et al. Profiling of protein–protein interactions via single-molecule techniques predicts the dependence of cancers on growth-factor receptors. Nat. Biomed. Eng. 2, 239–253 (2018).

    Google Scholar 

  99. Cha, M. et al. Quantitative imaging of vesicle–protein interactions reveals close cooperation among proteins. J. Extracell. Vesicles 12, 12322 (2023).

    Google Scholar 

  100. Park, C. et al. High-speed magnetic tweezers for nanomechanical measurements on force-sensitive elements. J. Vis. Exp. https://doi.org/10.3791/65137 (2023).

  101. Hong, S. et al. High-speed measurements of SNARE–complexin interactions using magnetic tweezers. in Methods in Enzymology, Chapter Four, (eds Ju Shon, M. & Yoon, T.-Y.) 694, 109–135 (Academic Press, 2024).

  102. Shon, M. J., Rah, S.-H. & Yoon, T.-Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci. Adv. 5, eaav1697 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank Jeong-Mo Choi, Cherlhyun Jeong, and Hajin Kim for helpful discussions; Euddeum E. Jeong, Gyu Ri Kim, Jiwon Jang, Sejoo Jeong, and Jong-Chan Lee for the help with cell imaging; Hee-Jung Jung for the help with mass spectrometry data analysis; Minkwon Cha, Sang-Hyeok Jeong, Surim Yoo, and Jiyoung Lee for the help with experiments; and the members of the Shon laboratory for discussions and assistance. We also thank UCRF (UNIST Central Research Facilities) for support in using the LC-MS/MS equipment; Gil-Yeol Ryu at the POSTECH Biotech Center for support with the Bio-TEM equipment. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1C1C1012176 and RS-2024-00344154 to M.J.S.; RS-2023–00218927 to J.-B.L., J.-H.J., M.J.S., and Y.K.; 2022R1C1C1005378 to Y.K.) and by POSTECH Basic Science Research Institute Grant (RS-2021-NR060139 to M.J.S.).

Author information

Author notes
  1. Yuri Hong

    Present address: Max Planck Institute of Cell Biology and Genetics, Dresden, Germany

  2. These authors contributed equally: Celine Park, Jaehun Jung, Yuri Hong.

Authors and Affiliations

  1. Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

    Celine Park, Jaehun Jung, Haeun Yoo, Keunsang Yang, Jaehyeon Shin, Minsik Kim, Chan Lim, Ayoung Jeong, Seokyun Hong, Jun Young Baek, Sang-Hyun Rah, Chaelin Lee-Eom, Jae-Hyung Jeon, Jong-Bong Lee & Min Ju Shon

  2. School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

    Yuri Hong, Jong-Bong Lee, Dong Soo Hwang & Min Ju Shon

  3. Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea

    Minseok Seo & Yoori Kim

  4. New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea

    Yoori Kim

  5. Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

    Dong Soo Hwang

Authors
  1. Celine Park
    View author publications

    Search author on:PubMed Google Scholar

  2. Jaehun Jung
    View author publications

    Search author on:PubMed Google Scholar

  3. Yuri Hong
    View author publications

    Search author on:PubMed Google Scholar

  4. Haeun Yoo
    View author publications

    Search author on:PubMed Google Scholar

  5. Keunsang Yang
    View author publications

    Search author on:PubMed Google Scholar

  6. Jaehyeon Shin
    View author publications

    Search author on:PubMed Google Scholar

  7. Minsik Kim
    View author publications

    Search author on:PubMed Google Scholar

  8. Chan Lim
    View author publications

    Search author on:PubMed Google Scholar

  9. Ayoung Jeong
    View author publications

    Search author on:PubMed Google Scholar

  10. Seokyun Hong
    View author publications

    Search author on:PubMed Google Scholar

  11. Jun Young Baek
    View author publications

    Search author on:PubMed Google Scholar

  12. Sang-Hyun Rah
    View author publications

    Search author on:PubMed Google Scholar

  13. Chaelin Lee-Eom
    View author publications

    Search author on:PubMed Google Scholar

  14. Minseok Seo
    View author publications

    Search author on:PubMed Google Scholar

  15. Yoori Kim
    View author publications

    Search author on:PubMed Google Scholar

  16. Jae-Hyung Jeon
    View author publications

    Search author on:PubMed Google Scholar

  17. Jong-Bong Lee
    View author publications

    Search author on:PubMed Google Scholar

  18. Dong Soo Hwang
    View author publications

    Search author on:PubMed Google Scholar

  19. Min Ju Shon
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.J.S. conceived the project. C.P., J.J., Y.H., D.S.H., and M.J.S. designed the experiments. C.P., J.J., Y.H., H.Y., K.Y., J.Y.B., S.-H.R., C.L.-E., and M.S. prepared all samples. C.P. performed TIRF imaging and microtubule experiments. J.J., J.Y.B., and S.-H.R. performed magnetic tweezers experiments. J.J. and H.Y. conducted confocal imaging and bulk LLPS experiments. K.Y. conducted skybridge experiments, and J.S. analyzed the results. A.J. and S.H. performed RNA sequencing and analysis. M.K. with C.L. ran tau–DNA binding simulations and analyzed the results, and J.-H.J. oversaw data analysis. M.J.S., D.S.H., J.-B.L., J.-H.J., and Y.K. supervised the study. C.P., J.J., H.Y., J.S., S.H., K.Y., M.K., and C.L. prepared figures and drafted the initial manuscript. M.J.S., C.P., and J.J. wrote and edited the final manuscript with contributions from all authors.

Corresponding authors

Correspondence to Dong Soo Hwang or Min Ju Shon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Paul Maddox, and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Descriptions of Additional Supplementary Files

Supplementary Data 1

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Supplementary Movie 8

Supplementary Movie 9

Supplementary Movie 10

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Jung, J., Hong, Y. et al. Tau condensation on DNA mediates microtubule attachment suggesting a mitotic role for centromere-localized tau. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67888-x

Download citation

  • Received: 04 October 2024

  • Accepted: 11 December 2025

  • Published: 07 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-67888-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing