Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ultrafast dynamics of vibronically dressed core excitons in graphite: a femtosecond RIXS perspective
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 December 2025

Ultrafast dynamics of vibronically dressed core excitons in graphite: a femtosecond RIXS perspective

  • Marco Malvestuto  ORCID: orcid.org/0000-0003-4418-035X1,2,
  • Beatrice Volpato  ORCID: orcid.org/0009-0001-7613-80953,
  • Elena Babici  ORCID: orcid.org/0009-0008-1581-20753,
  • Richa Bhardwaj1,
  • Antonio Caretta  ORCID: orcid.org/0000-0003-0580-35421,
  • Simone Laterza  ORCID: orcid.org/0000-0002-8971-66081,
  • Fulvio Parmigiani1,3,
  • Michele Manfredda  ORCID: orcid.org/0000-0002-1965-83501,
  • Alberto Simoncig1,
  • Marco Zangrando  ORCID: orcid.org/0000-0001-8860-39621,2,
  • Alexander Demidovich1,
  • Peter Susnjar1,
  • Enrico Massimiliano Allaria  ORCID: orcid.org/0000-0001-9570-63611,
  • Alexander Darius Brynes  ORCID: orcid.org/0000-0003-2343-75661,4,
  • David Garzella1,
  • Luca Giannessi  ORCID: orcid.org/0000-0002-7643-98401,
  • Primož Rebernik  ORCID: orcid.org/0000-0002-5555-601X1,
  • Filippo Sottocorona1 &
  • …
  • Dino Novko5,6 

Nature Communications , Article number:  (2025) Cite this article

  • 3554 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Free-electron lasers
  • Two-dimensional materials

Abstract

Time-resolved resonant inelastic X-ray scattering (tr-RIXS) is a powerful technique for probing quasiparticle interactions in quantum materials under nonequilibrium conditions. Here, we implement tr-RIXS at the carbon K-edge to investigate the ultrafast dynamics of core excitons coupled to vibrational modes in graphite. Using femtosecond X-ray pulses from a free-electron laser, we monitor the temporal evolution of vibronically dressed excitons and their interaction with symmetry-selective optical phonons. By tuning the incident photon energy across the 1s → σ* resonance and analyzing the integrated inelastic sideband intensity, we reveal a detuning-controlled crossover between two complementary dynamical regimes. Phenomenological modeling and first-principles calculations reproduce both the magnitude and detuning dependence of the spectral-weight changes. In this work, enabled by the unique capabilities of X-ray free-electron lasers, we demonstrate how tr-RIXS can access coupled electronic and lattice dynamics with elemental and symmetry specificity, opening new routes to control vibronic interactions in light-element and low-dimensional quantum materials.

Similar content being viewed by others

Resonant inelastic X-ray scattering

Article 04 July 2024

Resonant inelastic x-ray scattering in warm-dense Fe compounds beyond the SASE FEL resolution limit

Article Open access 06 August 2024

Capturing ultrafast molecular motions and lattice dynamics in spin crossover film using femtosecond diffraction methods

Article Open access 27 February 2025

Data availability

The data that support the findings of this study, including raw and processed RIXS spectra, XAS profiles, and analysis outputs, are publicly available in the Elettra Sincrotrone Trieste S.C.p.A. repository under the title Dataset of Ultrafast dynamics of vibronically dressed core excitons in graphite at https://doi.org/10.34965/i53456. Source data for Figs. 1-4 and Supplementary Figs. are provided with the paper.

Code availability

All analysis scripts and fitting routines used in this study are available in the same repository at https://doi.org/10.34965/i53456under a CC-BY-SA-4.0 license.

References

  1. Yu, P. Y. & Cardona, M. Fundamentals of semiconductors, physics and materials properties. Grad. Texts Phys. 1–15 https://doi.org/10.1007/3-540-26475-2_1 (2005).

  2. Ahuja, R. et al. Theoretical and experimental study of the graphite 1s X-ray absorption edges. Phys. Rev. B 54, 14396–14404 (1996).

    Google Scholar 

  3. Zhang, L. et al. Electronic band structure of graphene from resonant soft X-ray spectroscopy: the role of core-hole effects. Phys. Rev. B 86, 245430 (2012).

    Google Scholar 

  4. Wessely, O., Katsnelson, M. I. & Eriksson, O. Ab initio theory of dynamical core-hole screening in graphite from X-ray absorption spectra. Phys. Rev. Lett. 94, 167401 (2005).

    Google Scholar 

  5. Veenendaal, M. V. & Carra, P. Excitons and resonant inelastic X-ray scattering in graphite. Phys. Rev. Lett. 78, 2839–2842 (1997).

    Google Scholar 

  6. Brühwiler, P. A. et al. π* and σ* excitons in C 1s absorption of graphite. Phys. Rev. Lett. 74, 614–617 (1995).

    Google Scholar 

  7. Skytt, P. & Ma, Y. Angle-resolved soft-x-ray fluorescence and absorption study of graphite. Phys. Rev. B 50, 10457–10461 (1994).

    Google Scholar 

  8. Ma, Y. et al. Core excitons and vibronic coupling in diamond and graphite. Phys. Rev. Lett. 71, 3725–3728 (1993).

    Google Scholar 

  9. Sette, F. et al. Lifetime and screening of the C 1s photoemission in graphite. Phys. Rev. B 41, 9766–9770 (1990).

    Google Scholar 

  10. Weng, X., Rez, P. & Ma, H. Carbon K-shell near-edge structure: multiple scattering and band-theory calculations. Phys. Rev. B 40, 4175–4178 (1989).

    Google Scholar 

  11. Mele, E. J. & Ritsko, J. J. Fermi-level lowering and the core exciton spectrum of intercalated graphite. Phys. Rev. Lett. 43, 68–71 (1979).

    Google Scholar 

  12. Feng, X. et al. Disparate exciton-phonon couplings for zone-center and boundary phonons in solid-state graphite. Phys. Rev. Lett. 125, 116401 (2020).

    Google Scholar 

  13. Gilmore, K. Quantifying vibronic coupling with resonant inelastic X-ray scattering. Phys. Chem. Chem. Phys. 25, 217–231 (2022).

    Google Scholar 

  14. Dashwood, C. D. et al. Probing electron-phonon interactions away from the Fermi level with resonant inelastic X-ray scattering. Phys. Rev. X 11, 041052 (2021).

    Google Scholar 

  15. Geondzhian, A. & Gilmore, K. Generalization of the Franck-Condon model for phonon excitations by resonant inelastic x-ray scattering. Phys. Rev. B 101, 214307 (2020).

    Google Scholar 

  16. Harada, Y. et al. Dynamical symmetry breaking under core excitation in graphite: polarization correlation in soft X-ray recombination emission. Phys. Rev. Lett. 93, 017401 (2004).

    Google Scholar 

  17. Attekum, P. M. T. M. V. & Wertheim, G. K. Excitonic effects in core-hole screening. Phys. Rev. Lett. 43, 1896–1898 (1979).

    Google Scholar 

  18. Dean, M. P. M. et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4. Nat. Mater. 15, 601–605 (2016).

    Google Scholar 

  19. Cao, Y. et al. Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective. Philos. Trans. R. Soc. A 377, 20170480 (2019).

    Google Scholar 

  20. Mazzone, D. G. et al. Laser-induced transient magnons in Sr3Ir2O7 throughout the Brillouin zone. Proc. Natl Acad. Sci. 118, 2103696118 (2021).

    Google Scholar 

  21. Paris, E. et al. Probing the interplay between lattice dynamics and short-range magnetic correlations in CuGeO3 with femtosecond RIXS. npj Quantum Mater. 6, 51 (2021).

    Google Scholar 

  22. Mitrano, M., Johnston, S., Kim, Y.-J. & Dean, M. P. M. Exploring quantum materials with resonant inelastic X-Ray scattering. Phys. Rev. X 14, 040501 (2024).

    Google Scholar 

  23. Thielemann-Kühn, N. et al. Optical control of 4f orbital state in rare-earth metals. Sci. Adv. 10, 9522 (2024).

    Google Scholar 

  24. Xu, C. & Zong, A. Time-domain study of coupled collective excitations in quantum materials. npj Quantum Mater. 10, 21 (2025).

    Google Scholar 

  25. Freibert, A., Mendive-Tapia, D., Huse, N. & Vendrell, O. Time-dependent resonant inelastic X-ray scattering of pyrazine at the nitrogen K-edge: a quantum dynamics approach. J. Chem. Theory Comput. 20, 2167–2180 (2024).

    Google Scholar 

  26. Monney, C., Patthey, L., Razzoli, E. & Schmitt, T. Static and time-resolved resonant inelastic X-ray scattering: Recent results and future prospects. X Ray Spectrom. 52, 216–225 (2023).

    Google Scholar 

  27. Ishioka, K. et al. Ultrafast electron-phonon decoupling in graphite. Phys. Rev. B 77, 121402 (2008).

    Google Scholar 

  28. Pomarico, E. et al. Enhanced electron-phonon coupling in graphene with periodically distorted lattice. Phys. Rev. B 95, 024304 (2017).

    Google Scholar 

  29. Erhardt, N. G. et al. Ultrafast Nonequilibrium Enhancement of Electron-Phonon Interaction in 2H-MoTe2. Phys. Rev. Lett. 135, 146904 (2025).

  30. Pan, Y. et al. Momentum-resolved signatures of carrier screening effects on electron-phonon coupling in MoS2. ACS Nano 19, 11381–11389 (2025).

    Google Scholar 

  31. Ament, L. J. P., Veenendaal, M. V., Devereaux, T. P., Hill, J. P. & Brink, J. V. D. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    Google Scholar 

  32. Carlisle, J. A. et al. Probing the graphite band structure with resonant soft-X-ray fluorescence. Phys. Rev. Lett. 74, 1234–1237 (1994).

    Google Scholar 

  33. Gel’mukhanov, F., Sałek, P., Privalov, T. & Ågren, H. Duration of x-ray Raman scattering. Phys. Rev. A 59, 380–389 (1999).

    Google Scholar 

  34. Yavaş, H. et al. Observation of phonons with resonant inelastic x-ray scattering. J. Phys. Condens. Matter 22, 485601 (2010).

    Google Scholar 

  35. Mainwood, A. & Stoneham, A. M. A comparison of the core exciton and nitrogen donor in diamond. J. Phys. Condens. Matter 6, 4917 (1994).

    Google Scholar 

  36. Gel’mukhanov, F. & Ågren, H. Resonant inelastic x-ray scattering with symmetry-selective excitation. Phys. Rev. A 49, 4378–4389 (1994).

    Google Scholar 

  37. Geondzhian, A. & Gilmore, K. Demonstration of resonant inelastic x-ray scattering as a probe of exciton-phonon coupling. Phys. Rev. B 98, 214305 (2018).

    Google Scholar 

  38. Malvestuto, M. et al. The MagneDyn beamline at the FERMI free electron laser. Rev. Sci. Instrum. 93, 115109 (2022).

    Google Scholar 

  39. Xu, S. et al. Energy dependence of electron lifetime in graphite observed with femtosecond photoemission spectroscopy. Phys. Rev. Lett. 76, 483–486 (1996).

    Google Scholar 

  40. Breusing, M. et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83, 153410 (2011).

    Google Scholar 

  41. Spataru, C. D. et al. Anomalous quasiparticle lifetime in graphite: band structure effects. Phys. Rev. Lett. 87, 246405 (2001).

    Google Scholar 

  42. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Google Scholar 

  43. Park, C.-H., Giustino, F., Spataru, C. D., Cohen, M. L. & Louie, S. G. First-principles study of electron linewidths in graphene. Phys. Rev. Lett. 102, 076803 (2009).

    Google Scholar 

  44. Park, C.-H., Giustino, F., Cohen, M. L. & Louie, S. G. Velocity renormalization and carrier lifetime in graphene from the electron-phonon interaction. Phys. Rev. Lett. 99, 086804 (2007).

    Google Scholar 

  45. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Google Scholar 

  46. Caruso, F., Novko, D. & Draxl, C. Photoemission signatures of nonequilibrium carrier dynamics from first principles. Phys. Rev. B 101, 035128 (2020).

    Google Scholar 

  47. Novko, D. & Kralj, M. Phonon-assisted processes in the ultraviolet-transient optical response of graphene. npj 2D Mater. Appl. 3, 48 (2019).

    Google Scholar 

  48. Duvel, M. et al. Far-from-equilibrium electron-phonon interactions in optically excited graphene. Nano Lett. 22, 4897–4904 (2022).

    Google Scholar 

  49. Girotto, N. & Novko, D. Dynamical phonons following electron relaxation stages in photoexcited graphene. J. Phys. Chem. Lett. 14, 8709–8716 (2023).

    Google Scholar 

  50. Sidiropoulos, T. P. H. et al. Probing the energy conversion pathways between light, carriers, and lattice in real time with attosecond core-level spectroscopy. Phys. Rev. X 11, 041060 (2021).

    Google Scholar 

  51. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2008).

    Google Scholar 

  52. Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C. & Wolf, M. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005).

    Google Scholar 

  53. Ritsko, J. J. Valence- and core-electronic excitations in potassium-intercalated graphite. Phys. Rev. B 25, 6452–6459 (1982).

    Google Scholar 

  54. Carlisle, J. A. et al. Crystal-momentum-resolved electronic structure of solids using resonant soft-X-ray fluorescence spectroscopy. J. Electron Spectrosc. Relat. Phenom. 110, 323–334 (2000).

    Google Scholar 

  55. Skytt, P. et al. Probing symmetry breaking upon core excitation with resonant x-ray fluorescence. Phys. Rev. A 52, 3572–3576 (1995).

    Google Scholar 

  56. Skytt, P. et al. Quenching of symmetry breaking in resonant inelastic X-ray scattering by detuned excitation. Phys. Rev. Lett. 77, 5035–5038 (1996).

    Google Scholar 

  57. Ma, Y. et al. Soft-x-ray resonant inelastic scattering at the C K edge of diamond. Phys. Rev. Lett. 69, 2598–2601 (1992).

    Google Scholar 

  58. Brühwiler, P. A., Kuiper, P., Eriksson, O., Ahuja, R. & Svensson, S. Core hole effects in resonant inelastic X-ray scattering of graphite. Phys. Rev. Lett. 76, 1761–1761 (1996).

    Google Scholar 

  59. Margine, E. R. & Giustino, F. Two-gap superconductivity in heavily n-doped graphene: Ab initio Migdal-Eliashberg theory. Phys. Rev. B 90, 014518 (2014).

    Google Scholar 

  60. Mazzola, F. et al. Strong electron-phonon coupling in the σ band of graphene. Phys. Rev. B 95, 075430 (2017).

    Google Scholar 

  61. Gel’mukhanov, F., Privalov, T. & Agren, H. Collapse of vibrational structure in spectra of resonant x-ray Raman scattering. Phys. Rev. A 56, 256 (1997).

    Google Scholar 

  62. Yang, J.-A., Parham, S., Dessau, D. & Reznik, D. Novel electron-phonon relaxation pathway in graphite revealed by time-resolved Raman scattering and angle-resolved photoemission spectroscopy. Sci. Rep. 7, 40876 (2017).

    Google Scholar 

  63. Ulstrup, S. et al. Ultrafast electron dynamics in epitaxial graphene investigated with time- and angle-resolved photoemission spectroscopy. J. Phys. Condens. Matter 27, 164206 (2015).

    Google Scholar 

  64. Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    Google Scholar 

  65. Na, M. X. et al. Direct determination of mode-projected electron-phonon coupling in the time domain. Science 366, 1231–1236 (2019).

    Google Scholar 

  66. Harb, M. et al. Picosecond dynamics of laser-induced strain in graphite. Phys. Rev. B 84, 045435 (2011).

    Google Scholar 

  67. Carbone, F., Baum, P., Rudolf, P. & Zewail, A. H. Structural preablation dynamics of graphite observed by ultrafast electron crystallography. Phys. Rev. Lett. 100, 035501 (2008).

    Google Scholar 

  68. Carbone, F. The interplay between structure and orbitals in the chemical bonding of graphite. Chem. Phys. Lett. 496, 291–295 (2010).

    Google Scholar 

  69. Stern, M. J. et al. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering. Phys. Rev. B 97, 165416 (2018).

    Google Scholar 

  70. Nordgren, J. & Guo, J. Instrumentation for soft X-ray emission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 110, 1–13 (2000).

    Google Scholar 

  71. Danailov, M. B. et al. Towards jitter-free pump-probe measurements at seeded free electron laser facilities. Opt. Express 22, 12869 (2014).

    Google Scholar 

  72. Sigalotti, P. et al. Ultrafast laser synchronization at the FERMI@Elettra FEL. In Proc. SPIE - The International Society for Optical Engineering 8778 (SPIE, 2013).

  73. Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Google Scholar 

  74. Baroni, S., Gironcoli, S. D., Corso, A. D. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Google Scholar 

  75. Lee, H. et al. Electron-phonon physics from first principles using the EPW code. npj Comput. Mater. 9, 156 (2023).

    Google Scholar 

  76. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    Google Scholar 

  77. Giustino, F. Electron-phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).

    Google Scholar 

  78. Pagliara, S. et al. Photoinduced π − pi* band gap renormalization in graphite. J. Am. Chem. Soc. 133, 6318–6322 (2011)..

  79. Williams, P. F., Rousseau, D. L. & Dworetsky, S. H. Resonance fluorescence and resonance raman scattering: lifetimes in molecular iodine. Phys. Rev. Lett. 32, 196–199 (1974).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of the staff at FERMI during the beamtimes 20209081 and 20214052. M.M. thanks Dr. Carlo Alberto Brondin (ISM-CNR) for the preparation of graphite crystals.

Author information

Authors and Affiliations

  1. Elettra Sincrotrone Trieste S.C.p.A, Trieste, Italy

    Marco Malvestuto, Richa Bhardwaj, Antonio Caretta, Simone Laterza, Fulvio Parmigiani, Michele Manfredda, Alberto Simoncig, Marco Zangrando, Alexander Demidovich, Peter Susnjar, Enrico Massimiliano Allaria, Alexander Darius Brynes, David Garzella, Luca Giannessi, Primož Rebernik & Filippo Sottocorona

  2. CNR - Istituto Officina dei Materiali (IOM), Trieste, Italy

    Marco Malvestuto & Marco Zangrando

  3. Department of Physics, University of Trieste, Trieste, Italy

    Beatrice Volpato, Elena Babici & Fulvio Parmigiani

  4. Science and Technology Facilities Council (STFC), Daresbury Laboratory, Warrington, UK

    Alexander Darius Brynes

  5. Centre for Advanced Laser Techniques, Institute of Physics, Zagreb, Croatia

    Dino Novko

  6. Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain

    Dino Novko

Authors
  1. Marco Malvestuto
    View author publications

    Search author on:PubMed Google Scholar

  2. Beatrice Volpato
    View author publications

    Search author on:PubMed Google Scholar

  3. Elena Babici
    View author publications

    Search author on:PubMed Google Scholar

  4. Richa Bhardwaj
    View author publications

    Search author on:PubMed Google Scholar

  5. Antonio Caretta
    View author publications

    Search author on:PubMed Google Scholar

  6. Simone Laterza
    View author publications

    Search author on:PubMed Google Scholar

  7. Fulvio Parmigiani
    View author publications

    Search author on:PubMed Google Scholar

  8. Michele Manfredda
    View author publications

    Search author on:PubMed Google Scholar

  9. Alberto Simoncig
    View author publications

    Search author on:PubMed Google Scholar

  10. Marco Zangrando
    View author publications

    Search author on:PubMed Google Scholar

  11. Alexander Demidovich
    View author publications

    Search author on:PubMed Google Scholar

  12. Peter Susnjar
    View author publications

    Search author on:PubMed Google Scholar

  13. Enrico Massimiliano Allaria
    View author publications

    Search author on:PubMed Google Scholar

  14. Alexander Darius Brynes
    View author publications

    Search author on:PubMed Google Scholar

  15. David Garzella
    View author publications

    Search author on:PubMed Google Scholar

  16. Luca Giannessi
    View author publications

    Search author on:PubMed Google Scholar

  17. Primož Rebernik
    View author publications

    Search author on:PubMed Google Scholar

  18. Filippo Sottocorona
    View author publications

    Search author on:PubMed Google Scholar

  19. Dino Novko
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.M., A.C., R.B., and S.L. carried out the experiment, collected the data, and contributed to the preliminary analysis. B.V. and E.B. participated in the data analysis. The theoretical investigation was conducted by D.N., M.M., and A.C. were responsible for the MagneDyn endstation. P.R., E.M.A., A.D.B., L.G., D.G., and F.S. optimized the accelerator and provided the FEL beam. M.Ma., A.S., and M.Z. optimized the optical transport of the MagneDyn beamline and characterized the FEL pulses. A.C., A.D., and P.S. optimized the optical laser system. S.L., D.N., and F.P. contributed to the revision of the manuscript. M.M. wrote the manuscript, which all authors discussed. M.M. proposed and led the project.

Corresponding author

Correspondence to Marco Malvestuto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks MengXing (Ketty) Na, and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malvestuto, M., Volpato, B., Babici, E. et al. Ultrafast dynamics of vibronically dressed core excitons in graphite: a femtosecond RIXS perspective. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67919-7

Download citation

  • Received: 24 March 2025

  • Accepted: 11 December 2025

  • Published: 29 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-67919-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing