Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ribosome biogenesis as a potential therapeutic target in KRAS mutant colorectal cancer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 December 2025

Ribosome biogenesis as a potential therapeutic target in KRAS mutant colorectal cancer

  • Yui Tanaka1,2 na1,
  • Mizuho Sakahara1 na1,
  • Hitomi Yamanaka1,
  • Yasuko Natsume1,
  • Daisuke Kusama1,
  • Kohei Kumegawa  ORCID: orcid.org/0000-0003-3732-28743,
  • Harunori Yoshikawa  ORCID: orcid.org/0000-0003-3793-62194,
  • Yuich Abe5 nAff10,
  • Koji Okabayashi2,
  • Shimpei Matui2,
  • Yuko Kitagawa2,
  • Naohiko Koshikawa6,
  • Hiroki Osumi  ORCID: orcid.org/0000-0002-4742-04467,
  • Eiji Shinozaki7,
  • Satoshi Nagayama  ORCID: orcid.org/0000-0001-9632-914X8,
  • Jun Adachi  ORCID: orcid.org/0000-0003-1220-32465,
  • Reo Maruyama  ORCID: orcid.org/0000-0001-7166-59643,9 &
  • …
  • Ryoji Yao  ORCID: orcid.org/0000-0003-0327-09651 

Nature Communications , Article number:  (2025) Cite this article

  • 3419 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer stem cells
  • Colorectal cancer
  • Target identification

Abstract

Molecular targeted therapies targeting KRAS signaling have significantly improved patient outcomes, but they have not achieved sufficient therapeutic efficacy in colorectal cancer (CRC). Here, we demonstrate that a subset of KRAS-mutant CRC cells transitions to a cellular state characterized by enhanced ribosome biogenesis upon KRAS signaling inhibition. The mitogen-activated protein kinase kinase inhibitor, trametinib, and AMG510 induce a cellular state characterized by a gene expression profile highly enriched for ribosome biogenesis. We find that they are vulnerable to the inhibition of RNA polymerase I, and they exhibit synergistic anti-tumor effects with trametinib in an autochthonous mouse model of intestinal tumors and human patient-derived organoids (PDOs). These observations demonstrate that high ribosome biogenesis induced by KRAS inhibition is indispensable to maintain this cellular state and is a potential therapeutic target. Overall, this study reveals novel mechanisms of drug tolerance to KRAS inhibition, thereby facilitating the development of new therapeutic strategies.

Similar content being viewed by others

Colon cancer cells evade drug action by enhancing drug metabolism

Article Open access 10 July 2025

KRAS-targeted therapies in colorectal cancer: a systematic analysis of mutations, inhibitors, and clinical trials

Article Open access 26 November 2025

Leveraging a KRAS-based signature to predict the prognosis and drug sensitivity of colon cancer and identifying SPINK4 as a new biomarker

Article Open access 14 December 2023

Data availability

The raw RNA-seq data generated in this study have been deposited in the European Nucleotide Archive (ENA) database under accession code E-MTAB-16177 [sample entry: https://www.ebi.ac.uk/ena/browser/view/SAMEA120567684?show=reads] and E-MTAB-16244 [project entry: https://www.ebi.ac.uk/ena/browser/view/ERP185461]. The processed data from the scRNA-seq are available in the Gene Expression Omnibus (GEO) database under accession code GSE264485. The raw mass spectrometry (MS) data generated in this study have been deposited in the ProteomeXchange Consortium (https://www.proteomexchange.org/) via the Jpost partner repository under accession ID PXD052914/JPST003164 [https://repository.jpostdb.org/entry/JPST003164.0]. The raw exome-seq data are protected and are not available due to data privacy laws, and the processed data generated in this study are provided in the Supplementary Information file. Source data are provided with this paper. The data from this study are available from the corresponding author upon reasonable request.

References

  1. De Roock, W. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11, 753–762 (2010).

    Google Scholar 

  2. Poulikakos, P. I. & Solit, D. B. Resistance to MEK inhibitors: should we co-target upstream? Sci. Signal 4, pe16 (2011).

    Google Scholar 

  3. Caunt, C. J., Sale, M. J., Smith, P. D. & Cook, S. J. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat. Rev. Cancer 15, 577–592 (2015).

    Google Scholar 

  4. Kim, D., Xue, J. Y. & Lito, P. Targeting KRAS(G12C): from inhibitory mechanism to modulation of antitumor effects in patients. Cell 183, 850–859 (2020).

    Google Scholar 

  5. Kim, D. et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 619, 160–166 (2023).

    Google Scholar 

  6. Konieczkowski, D. J., Johannessen, C. M. & Garraway, L. A. A convergence-based framework for cancer drug resistance. Cancer Cell 33, 801–815 (2018).

    Google Scholar 

  7. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Google Scholar 

  8. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Google Scholar 

  9. Manchado, E. et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016).

    Google Scholar 

  10. Fakih, M. G. et al. Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol. 23, 115–124 (2022).

    Google Scholar 

  11. Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer 13, 727–738 (2013).

    Google Scholar 

  12. Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer 12, 767–775 (2012).

    Google Scholar 

  13. Phi, L. T. H. et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018, 5416923 (2018).

    Google Scholar 

  14. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Google Scholar 

  15. Wiecek, A. J. et al. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol. 24, 128 (2023).

    Google Scholar 

  16. De Conti, G., Dias, M. H. & Bernards, R. Fighting drug resistance through the targeting of drug-tolerant persister cells. Cancers 13, https://doi.org/10.3390/cancers13051118 (2021).

  17. Saba, J. A., Liakath-Ali, K., Green, R. & Watt, F. M. Translational control of stem cell function. Nat. Rev. Mol. Cell Biol. 22, 671–690 (2021).

    Google Scholar 

  18. Morral, C. et al. Zonation of ribosomal DNA transcription defines a stem cell hierarchy in colorectal cancer. Cell Stem Cell 26, 845–861 (2020).

    Google Scholar 

  19. Pu, Y. et al. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat. Rev. Clin. Oncol. 20, 799–813 (2023).

    Google Scholar 

  20. Dhanyamraju, P. K., Schell, T. D., Amin, S. & Robertson, G. P. Drug-tolerant persister cells in cancer therapy resistance. Cancer Res. 82, 2503–2514 (2022).

    Google Scholar 

  21. Sakahara, M. et al. IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci. 110, 1293–1305 (2019).

    Google Scholar 

  22. Chen, B. et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 184, 6262–6280 (2021).

    Google Scholar 

  23. Tabula Sapiens, C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Google Scholar 

  24. Lempiainen, H. & Shore, D. Growth control and ribosome biogenesis. Curr. Opin. Cell Biol. 21, 855–863 (2009).

    Google Scholar 

  25. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Google Scholar 

  26. Zaidi, S. K. et al. Expression of ribosomal RNA and protein genes in human embryonic stem cells is associated with the activating H3K4me3 histone mark. J. Cell. Physiol. 231, 2007–2013 (2016).

    Google Scholar 

  27. Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).

    Google Scholar 

  28. Atlasi, Y. et al. The translational landscape of ground state pluripotency. Nat. Commun. 11, 1617 (2020).

    Google Scholar 

  29. Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).

    Google Scholar 

  30. Li, D. & Wang, J. Ribosome heterogeneity in stem cells and development. J. Cell Biol. 219, https://doi.org/10.1083/jcb.202001108 (2020).

  31. Corsini, N. S. et al. Coordinated control of mRNA and rRNA processing controls embryonic stem cell pluripotency and differentiation. Cell Stem Cell 22, 543–558 e512 (2018).

    Google Scholar 

  32. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K. & Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64 (2004).

    Google Scholar 

  33. Sampath, P. et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2, 448–460 (2008).

    Google Scholar 

  34. Watanabe-Susaki, K. et al. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells 32, 3099–3111 (2014).

    Google Scholar 

  35. Morral, C., Stanisavljevic, J. & Batlle, E. Protocol for efficient protein synthesis detection by click chemistry in colorectal cancer patient-derived organoids grown in vitro. STAR Protoc. 1, 100103 (2020).

    Google Scholar 

  36. Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

    Google Scholar 

  37. Abe, Y. et al. Improved phosphoproteomic analysis for phosphosignaling and active-kinome profiling in Matrigel-embedded spheroids and patient-derived organoids. Sci. Rep. 8, 11401 (2018).

    Google Scholar 

  38. Tahir, R. et al. Mutation-specific and common phosphotyrosine signatures of KRAS G12D and G13D alleles. J. Proteome Res. 20, 670–683 (2021).

    Google Scholar 

  39. Hammond, D. E. et al. Differential reprogramming of isogenic colorectal cancer cells by distinct activating KRAS mutations. J. Proteome Res. 14, 1535–1546 (2015).

    Google Scholar 

  40. Lackner, A. et al. Cooperative genetic networks drive embryonic stem cell transition from naive to formative pluripotency. EMBO J. 40, e105776 (2021).

    Google Scholar 

  41. Pieters, T. & van Roy, F. Role of cell-cell adhesion complexes in embryonic stem cell biology. J. Cell Sci. 127, 2603–2613 (2014).

    Google Scholar 

  42. Huai, Y. et al. How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases? Biosci. Trends 16, 389–404 (2022).

    Google Scholar 

  43. Okuwaki, M. et al. The stability of NPM1 oligomers regulated by acidic disordered regions controls the quality of liquid droplets. J. Biochem. 174, 461–476 (2023).

    Google Scholar 

  44. Krug, K. et al. A curated resource for phosphosite-specific signature analysis. Mol. Cell. Proteom. 18, 576–593 (2019).

    Google Scholar 

  45. Lu, W. C. et al. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation. FEBS J. 289, 3876–3893 (2022).

    Google Scholar 

  46. Chou, S. D., Prince, T., Gong, J. & Calderwood, S. K. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS ONE 7, e39679 (2012).

    Google Scholar 

  47. Yang, L. et al. CCL2 regulation of MST1-mTOR-STAT1 signaling axis controls BCR signaling and B-cell differentiation. Cell Death Differ 28, 2616–2633 (2021).

    Google Scholar 

  48. Fielhaber, J. A. et al. Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion. J. Biol. Chem. 284, 24341–24353 (2009).

    Google Scholar 

  49. Chou, T. C. Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J. Theor. Biol. 59, 253–276 (1976).

    Google Scholar 

  50. Chou, T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010).

    Google Scholar 

  51. Asghar, U., Witkiewicz, A. K., Turner, N. C. & Knudsen, E. S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 14, 130–146 (2015).

    Google Scholar 

  52. Parry, T. J. et al. The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes Dev. 24, 2013–2018 (2010).

    Google Scholar 

  53. Li, Y. et al. RNA pol II preferentially regulates ribosomal protein expression by trapping disassociated subunits. Mol. Cell 83, 1280–1297 (2023).

    Google Scholar 

  54. Hannan, K. M., Hannan, R. D. & Rothblum, L. I. Transcription by RNA polymerase I. Front. Biosci. 3, d376–398 (1998).

    Google Scholar 

  55. Khot, A. et al. First-in-human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers: results of a phase I dose-escalation study. Cancer Discov. 9, 1036–1049 (2019).

    Google Scholar 

  56. Rodgers, M. L. & Woodson, S. A. Transcription increases the cooperativity of ribonucleoprotein assembly. Cell 179, 1370–1381.

  57. Duss, O., Stepanyuk, G. A., Puglisi, J. D. & Williamson, J. R. Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179, 1357–1369 (2019).

    Google Scholar 

  58. Calo, E. et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–253 (2015).

    Google Scholar 

  59. Bohnsack, K. E., Yi, S., Venus, S., Jankowsky, E. & Bohnsack, M. T. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat. Rev. Mol. Cell Biol. 24, 749–769 (2023).

    Google Scholar 

  60. Kusnadi, E. P. et al. Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis. EMBO J. 39, e105111 (2020).

    Google Scholar 

  61. Otto, C. et al. RNA polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells. Mol. Oncol. 16, 2788–2809 (2022).

    Google Scholar 

  62. Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27–31 (2016).

    Google Scholar 

  63. Hilton, J. et al. Results of the phase I CCTG IND.231 trial of CX-5461 in patients with advanced solid tumors enriched for DNA-repair deficiencies. Nat. Commun. 13, 3607 (2022).

    Google Scholar 

  64. Hong, D. S. et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).

    Google Scholar 

  65. Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885–896 (2005).

    Google Scholar 

  66. van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

    Google Scholar 

  67. Sullivan, D. K. et al. MYC oncogene elicits tumorigenesis associated with embryonic, ribosomal biogenesis, and tissue-lineage dedifferentiation gene expression changes. Oncogene 41, 4960–4970 (2022).

    Google Scholar 

  68. Fuentealba, L. C. et al. Embryonic origin of postnatal neural stem cells. Cell 161, 1644–1655 (2015).

    Google Scholar 

  69. Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).

    Google Scholar 

  70. Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    Google Scholar 

  71. Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).

    Google Scholar 

  72. Sanchez, C. G. et al. Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18, 276–290 (2016).

    Google Scholar 

  73. Zhang, Q., Shalaby, N. A. & Buszczak, M. Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage. Science 343, 298–301 (2014).

    Google Scholar 

  74. Figueiredo, V. C. & McCarthy, J. J. Targeting cancer via ribosome biogenesis: the cachexia perspective. Cell. Mol. Life Sci. 78, 5775–5787 (2021).

    Google Scholar 

  75. Pellegrino, S., Terrosu, S., Yusupova, G. & Yusupov, M. Inhibition of the eukaryotic 80S ribosome as a potential anticancer therapy: a structural perspective. Cancers 13, https://doi.org/10.3390/cancers13174392 (2021).

  76. Elhamamsy, A. R., Metge, B. J., Alsheikh, H. A., Shevde, L. A. & Samant, R. S. Ribosome biogenesis: a central player in cancer metastasis and therapeutic resistance. Cancer Res. 82, 2344–2353 (2022).

    Google Scholar 

  77. Xu, Y. & Ruggero, D. The role of translation control in tumorigenesis and its therapeutic implications. Annu. Rev. Cancer Biol. 4, 437–457 (2020).

    Google Scholar 

  78. Lee, H. C. et al. RNA polymerase I inhibition with CX-5461 as a novel therapeutic strategy to target MYC in multiple myeloma. Br. J. Haematol. 177, 80–94 (2017).

    Google Scholar 

  79. Devlin, J. R. et al. Combination therapy targeting ribosome biogenesis and mRNA translation synergistically extends survival in MYC-driven lymphoma. Cancer Discov. 6, 59–70 (2016).

    Google Scholar 

  80. Bywater, M. J. et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22, 51–65 (2012).

    Google Scholar 

  81. Tsoi, H., You, C. P., Leung, M. H., Man, E. P. S. & Khoo, U. S. Targeting ribosome biogenesis to combat tamoxifen resistance in ER+ve breast cancer. Cancers 14, https://doi.org/10.3390/cancers14051251 (2022).

  82. Taylor, J. S. et al. Down-regulation of MYCN protein by CX-5461 leads to neuroblastoma tumor growth suppression. J. Pediatr. Surg. 54, 1192–1197 (2019).

    Google Scholar 

  83. Wang, S. et al. ZNF545 loss promotes ribosome biogenesis and protein translation to initiate colorectal tumorigenesis in mice. Oncogene https://doi.org/10.1038/s41388-021-01938-8 (2021).

  84. Xu, H. et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 8, 14432 (2017).

    Google Scholar 

  85. Pan, M. et al. The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nat. Commun. 12, 6468 (2021).

    Google Scholar 

  86. Bruno, P. M. et al. The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc. Natl. Acad. Sci. USA 117, 4053–4060 (2020).

    Google Scholar 

  87. Koh, G. C. C. et al. The chemotherapeutic drug CX-5461 is a potent mutagen in cultured human cells. Nat. Genet. 56, 23–26 (2024).

    Google Scholar 

  88. De Roock, W. et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304, 1812–1820 (2010).

    Google Scholar 

  89. Hofmann, M. H., Gerlach, D., Misale, S., Petronczki, M. & Kraut, N. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov. 12, 924–937 (2022).

    Google Scholar 

  90. Neumann, J., Zeindl-Eberhart, E., Kirchner, T. & Jung, A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol. Res. Pract. 205, 858–862 (2009).

    Google Scholar 

  91. Holderfield, M. et al. Concurrent inhibition of oncogenic and wild-type RAS-GTP for cancer therapy. Nature https://doi.org/10.1038/s41586-024-07205-6 (2024).

  92. Jiang, J. et al. Translational and therapeutic evaluation of RAS-GTP inhibition by RMC-6236 in RAS-driven cancers. Cancer Discov. 14, 994–1017 (2024).

  93. Okamoto, T. et al. Comparative analysis of patient-matched PDOs revealed a reduction in OLFM4-associated clusters in metastatic lesions in colorectal cancer. Stem Cell Rep. 16, 1–14 (2021).

    Google Scholar 

  94. Okamoto, T., Natsume, Y., Yamanaka, H., Fukuda, M. & Yao, R. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids. STAR Protoc. 2, 100780 (2021).

    Google Scholar 

  95. Zhang, N., Fu, J. N. & Chou, T. C. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: experimental design and data analysis using the combination index method. Am. J. Cancer Res. 6, 97–104 (2016).

    Google Scholar 

  96. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Google Scholar 

  97. Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  98. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Google Scholar 

  99. Abe, Y. et al. Comprehensive characterization of the phosphoproteome of gastric cancer from endoscopic biopsy specimens. Theranostics 10, 2115–2129 (2020).

    Google Scholar 

  100. Adachi, J. et al. Improved proteome and phosphoproteome analysis on a cation exchanger by a combined acid and salt gradient. Anal. Chem. 88, 7899–7903 (2016).

    Google Scholar 

  101. Abe, Y., Nagano, M., Tada, A., Adachi, J. & Tomonaga, T. Deep phosphotyrosine proteomics by optimization of phosphotyrosine enrichment and MS/MS parameters. J. Proteome Res. 16, 1077–1086 (2017).

    Google Scholar 

  102. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Google Scholar 

Download references

Acknowledgements

We are grateful to all participants of this study. We would like to thank all lab members and staff for their assistance with sample collection and completion of this study. This work was supported in part by MEXT/JSPS KAKENHI (grant numbers 21H02770 [R.Y.] and 22K19468) and AMED (grant number JP23ama221116).

Author information

Author notes
  1. Yuich Abe

    Present address: Immunoproteomics Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan

  2. These authors contributed equally: Yui Tanaka, Mizuho Sakahara.

Authors and Affiliations

  1. Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan

    Yui Tanaka, Mizuho Sakahara, Hitomi Yamanaka, Yasuko Natsume, Daisuke Kusama & Ryoji Yao

  2. Department of Surgery, Keio University School of Medicine, Tokyo, Japan

    Yui Tanaka, Koji Okabayashi, Shimpei Matui & Yuko Kitagawa

  3. Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan

    Kohei Kumegawa & Reo Maruyama

  4. Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan

    Harunori Yoshikawa

  5. Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan

    Yuich Abe & Jun Adachi

  6. Department of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan

    Naohiko Koshikawa

  7. Department of Gastrointestinal Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan

    Hiroki Osumi & Eiji Shinozaki

  8. Department of Surgery, Uji-Tokushukai Medical Center, Uji, Japan

    Satoshi Nagayama

  9. Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan

    Reo Maruyama

Authors
  1. Yui Tanaka
    View author publications

    Search author on:PubMed Google Scholar

  2. Mizuho Sakahara
    View author publications

    Search author on:PubMed Google Scholar

  3. Hitomi Yamanaka
    View author publications

    Search author on:PubMed Google Scholar

  4. Yasuko Natsume
    View author publications

    Search author on:PubMed Google Scholar

  5. Daisuke Kusama
    View author publications

    Search author on:PubMed Google Scholar

  6. Kohei Kumegawa
    View author publications

    Search author on:PubMed Google Scholar

  7. Harunori Yoshikawa
    View author publications

    Search author on:PubMed Google Scholar

  8. Yuich Abe
    View author publications

    Search author on:PubMed Google Scholar

  9. Koji Okabayashi
    View author publications

    Search author on:PubMed Google Scholar

  10. Shimpei Matui
    View author publications

    Search author on:PubMed Google Scholar

  11. Yuko Kitagawa
    View author publications

    Search author on:PubMed Google Scholar

  12. Naohiko Koshikawa
    View author publications

    Search author on:PubMed Google Scholar

  13. Hiroki Osumi
    View author publications

    Search author on:PubMed Google Scholar

  14. Eiji Shinozaki
    View author publications

    Search author on:PubMed Google Scholar

  15. Satoshi Nagayama
    View author publications

    Search author on:PubMed Google Scholar

  16. Jun Adachi
    View author publications

    Search author on:PubMed Google Scholar

  17. Reo Maruyama
    View author publications

    Search author on:PubMed Google Scholar

  18. Ryoji Yao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.N., H.O., E.S., and S.N. established the PDOs. Y.T., H.Y., Y.N., H.Y., and D.K. conducted the in vitro analysis of PDOs. M.S. conducted in vivo analysis. N.K., Y.A., and J.A. conducted proteomic analysis. K.K. and R.M. conducted data analysis and visualization of the transcriptome. K.O., S.M., and Y.K. supervised the project. Y.K., S.N., R.M., and R.Y. designed the study. R.Y. wrote and edited the manuscript.

Corresponding author

Correspondence to Ryoji Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Ian Prior and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review File

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Sakahara, M., Yamanaka, H. et al. Ribosome biogenesis as a potential therapeutic target in KRAS mutant colorectal cancer. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67979-9

Download citation

  • Received: 29 May 2024

  • Accepted: 14 December 2025

  • Published: 27 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-67979-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer