Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Pangenome dynamics and population structure of the zoonotic pathogen Salmonella enterica serotype Hadar
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

Pangenome dynamics and population structure of the zoonotic pathogen Salmonella enterica serotype Hadar

  • Kaitlin A. Tagg1 na1,
  • Arancha Peñil-Celis  ORCID: orcid.org/0000-0003-2295-15632 na1,
  • Hattie E. Webb  ORCID: orcid.org/0000-0002-1190-79301,
  • G. Sean Stapleton1,
  • Zachary Ellison  ORCID: orcid.org/0009-0001-5585-878X1,3,
  • Molly Leeper1,
  • Justin Y. Kim1,4,
  • Mustafa Simmons5,
  • Glenn Tillman5,
  • Cong Li6,
  • Beth Harris7,
  • Brenda R. Morningstar-Shaw8,
  • Molly K. Steele1,
  • Daniel Mallal9,
  • Shannon Matzinger  ORCID: orcid.org/0000-0001-7910-46009,
  • Kathy Manion10,
  • John Hergert11,
  • Jennifer M. Wagner  ORCID: orcid.org/0000-0002-3548-590411,
  • Colin Schwensohn1,
  • Joshua M. Brandenburg1,3,
  • Sheryl Shaw5,
  • Katharine Benedict1,
  • Jason P. Folster1,
  • Uday Dessai  ORCID: orcid.org/0000-0001-6244-46335,
  • Santiago Redondo-Salvo  ORCID: orcid.org/0000-0003-0089-60302,
  • M. Pilar Garcillan-Barcia  ORCID: orcid.org/0000-0001-7058-54282 &
  • …
  • Fernando de la Cruz  ORCID: orcid.org/0000-0003-4758-68572 

Nature Communications , Article number:  (2026) Cite this article

  • 2662 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacterial genetics
  • Genome informatics

Abstract

The bacterial accessory genome, comprised of plasmids, phages, and other mobile elements, underpins the adaptability of bacterial populations. Pangenome (core and accessory) analysis of pathogens can reveal epidemiological relatedness missed by using core-genome methods alone. Employing a k-mer-based Jaccard Index approach to compute pangenome relatedness, we explore the population structure and epidemiology of Salmonella enterica serotype Hadar (Hadar), an emerging zoonotic pathogen in the United States (U.S.) linked to both commercial and backyard poultry. A total of 3384 U.S. Hadar genomes collected between 1990 and 2023 are analyzed here. Hadar populations underwent substantial shifts between 2019 and 2020 in the U.S., driven by the expansion of a lineage carrying a previously uncommon prophage-like element. Phylogenetic and pangenomic relatedness, coupled with epidemiological data, suggest this lineage emerged from extant populations circulating in commercial poultry, with subsequent dissemination into backyard poultry environments. We demonstrate the utility of pangenomic approaches for mapping vertical and horizontal diversity and informing complex dynamics of zoonotic bacterial pathogens.

Similar content being viewed by others

Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks

Article Open access 25 August 2021

Environmental metagenomics enhances detection of circulating viruses from live poultry markets in Cambodia

Article Open access 12 January 2026

Using metagenomics and whole-genome sequencing to characterize enteric pathogens across various sources in Africa

Article Open access 28 November 2025

Data availability

The authors declare that all genomic data supporting the findings of this study are publicly available through NCBI and Enterobase using accession numbers listed within the paper and its supplementary information files available through Figshare. Epidemiological data is available within supplementary information files. Some human patient information collected as part of routine public health surveillance or through supplementary standardized questionnaires are not publicly available due to data privacy laws; deidentified data are available on request by contacting pulsenet@cdc.gov, per data sharing policies. Source data are provided with this paper.

References

  1. Arnold, B. J., Huang, I. T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2021).

    Google Scholar 

  2. Jagadeesan, B. et al. The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol 79, 96–115 (2019).

    Google Scholar 

  3. Leeper, M. M. et al. Evaluation of whole and core genome multilocus sequence typing allele schemes for Salmonella enterica outbreak detection in a national surveillance network. PulseNet USA. Front. Microbiol. 14, 1254777 (2023).

    Google Scholar 

  4. Castillo-Ramírez, S. Beyond microbial core genomic epidemiology: towards pan genomic epidemiology. Lancet Microbe 3, e244–e245 (2022).

    Google Scholar 

  5. Liu, C. M. et al. Using source-associated mobile genetic elements to identify zoonotic extraintestinal E. coli infections. One Health 16, 100518 (2023).

    Google Scholar 

  6. Mcnally, A. et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 12, e1006280 (2016).

    Google Scholar 

  7. Guillier, L. et al. AB_SA: accessory genes-based source attribution – tracing the source of Salmonella enterica Typhimurium environmental strains. Microb. Genom. 6, mgen000366 (2020).

    Google Scholar 

  8. Batz, M. B. et al. Recency-weighted statistical modeling approach to attribute illnesses caused by 4 pathogens to food sources using outbreak data, United States. Emerg. Infect. Dis. 27, 214–222 (2021).

    Google Scholar 

  9. Beshearse, E. et al. Attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, United States. Emerg. Infect. Dis. 27, 182–195 (2021).

    Google Scholar 

  10. Interagency Food Safety Analytics Collaboration. Foodborne illness source attribution estimates for Salmonella, Escherichia coli O157, and Listeria monocytogenes – United States, 2022. GA and D.C.: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Food and Drug Administration, U.S. Department of Agriculture’s Food Safety and Inspection Service. (2024).

  11. Commichaux, S. et al. Assessment of plasmids for relating the 2020 Salmonella enterica serovar Newport onion outbreak to farms implicated by the outbreak investigation. BMC Genomics 24, 165 (2023).

    Google Scholar 

  12. Pan, H. et al. Comprehensive assessment of subtyping methods for improved surveillance of foodborne Salmonella. Microbiol. Spectr. 10, e02479–02422 (2022).

    Google Scholar 

  13. Peñil-Celis, A. et al. Mobile genetic elements define the non-random structure of the Salmonella enterica serovar Typhi pangenome. mSystems 9, e0036524 (2024).

    Google Scholar 

  14. Brandenburg, J. M. et al. Salmonella Hadar linked to two distinct transmission vehicles highlights challenges to enteric disease outbreak investigations. Epidemiol. Infect. 152, e86 (2024).

    Google Scholar 

  15. Stapleton, G. S. et al. Multistate outbreaks of salmonellosis linked to contact with backyard poultry-United States, 2015-2022. Zoonoses Public Health 71, 708–722 (2024).

    Google Scholar 

  16. Nichols, M. et al. Salmonella illness outbreaks linked to backyard poultry purchasing during the COVID-19 pandemic: United States, 2020. Epidemiol. Infect. 149, e234 (2021).

    Google Scholar 

  17. Centers for Disease Control and Prevention Data Summary: Persistent Strain of Salmonella Hadar (REPTDK01) Linked to Backyard Poultry and Ground Turkey. https://www.cdc.gov/salmonella/php/data-research/reptdk01.html (2024).

  18. The NCBI Pathogen Detection Project [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/pathogens/(2016).

  19. Fasano, A. et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA 88, 5242–5246 (1991).

    Google Scholar 

  20. Liu, F., Lee, H., Lan, R. & Zhang, L. Zonula occludens toxins and their prophages in Campylobacter species. Gut Pathog. 8, 43 (2016).

    Google Scholar 

  21. Mahendran, V. et al. Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathog. 8, 18 (2016).

    Google Scholar 

  22. Di Pierro, M. et al. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J. Biol. Chem. 276, 19160–19165 (2001).

    Google Scholar 

  23. Rathore, A. S., Choudhury, S., Arora, A., Tijare, P. & Raghava, G. P. S. ToxinPred 3.0: an improved method for predicting the toxicity of peptides. Comput. Biol. Med. 179, 108926 (2024).

    Google Scholar 

  24. 2016 Salmonella Outbreak Linked to Live Poultry in Backyard Flocks. https://archive.cdc.gov/#/details?url=https://www.cdc.gov/salmonella/live-poultry-05-16/index.html (2024).

  25. Kaldhone, P. R. et al. Evaluation of incompatibility group I1 (IncI1) plasmid-containing Salmonella enterica and assessment of the plasmids in bacteriocin production and biofilm development. Front. Vet. Sci. 6, 298 (2019).

    Google Scholar 

  26. Foley, S. L., Kaldhone, P. R., Ricke, S. C. & Han, J. Incompatibility group I1 (IncI1) plasmids: their genetics, biology, and public health relevance. Microbiol. Mol. Biol. Rev. 85, e00031–00020 (2021).

    Google Scholar 

  27. Nichols, M. et al. Preventing human Salmonella infections resulting from live poultry contact through interventions at retail stores. J. Agric. Saf. Health 24, 155–166 (2018).

    Google Scholar 

  28. Behravesh, C. B., Brinson, D., Hopkins, B. A. & Gomez, T. M. Backyard poultry flocks and salmonellosis: a recurring, yet preventable public health challenge. Clin. Infect. Dis. 58, 1432–1438 (2014).

    Google Scholar 

  29. Galán-Relaño, Á et al. Salmonella and salmonellosis: an update on public health implications and control strategies. Animals 13, 3666 (2023).

    Google Scholar 

  30. Centers for Disease Control and Prevention. Data Summary: persistent strain of Salmonella Infantis (REPJFX01) linked to chicken. https://www.cdc.gov/salmonella/php/data-research/repjfx01.html (2024).

  31. Hassan, R., Buuck, S. & Noveroske, D. Multistate outbreak of Salmonella infections linked to raw turkey products — United States, 2017–2019. MMWR Morb. Mortal. Wkly. Rep. 68, 1045–1049 (2019).

    Google Scholar 

  32. Ribot, E. M., Freeman, M., Hise, K. B. & Gerner-Smidt, P. PulseNet: entering the age of next-generation sequencing. Foodborne Pathog. Dis. 16, 451–456 (2019).

    Google Scholar 

  33. Tolar, B. et al. An overview of PulseNet USA databases. Foodborne Pathog. Dis. 16, 457–462 (2019).

    Google Scholar 

  34. Mcmillan, E. A. et al. Antimicrobial resistance genes, cassettes, and plasmids present in Salmonella enterica associated with United States food animals. Front. Microbiol. 10, 832 (2019).

    Google Scholar 

  35. Zhou, Z., Alikhan, N. F., Mohamed, K., Fan, Y. & Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 30, 138–152 (2020).

    Google Scholar 

  36. Achtman, M. et al. Genomic diversity of Salmonella enterica -The UoWUCC 10K genomes project [version 2; peer review: 2 approved]. Wellcome Open Res. 5, 223 (2021).

  37. Yoshida, C. E. et al. The Salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One 11, e0147101 (2016).

    Google Scholar 

  38. Zhang, S. et al. SeqSero2: Rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl. Environ. Microbiol. 85, e01746–01719 (2019).

    Google Scholar 

  39. Noll, N., Molari, M., Shaw, L. P. & Neher, R. A. PanGraph: scalable bacterial pan-genome graph construction. Microb. Genom. 9, mgen001034 (2023).

    Google Scholar 

  40. Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).

    Google Scholar 

  41. Garcillán-Barcia, M. P., Redondo-Salvo, S., Vielva, L. & De La Cruz, F. MOBscan: automated annotation of MOB relaxases. Methods Mol. Biol. 2075, 295–308 (2020).

  42. Cury, J., Abby, S. S., Doppelt-Azeroual, O., Néron, B. & Rocha, E. P. C., Identifying conjugative plasmids and integrative conjugative elements with CONJscan., in Horizontal Gene Transfer: Methods and Protocols, F. de la Cruz, Editor. Springer US: New York, NY. 265–283 (2020).

  43. Néron, B., et al. MacSyFinder v2: Improved modelling and search engine to identify molecular systems in genomes. Peer Commun. J. 3, e28 (2023).

  44. Redondo-Salvo, S. et al. COPLA, a taxonomic classifier of plasmids. BMC Bioinforma. 22, 390 (2021).

    Google Scholar 

  45. Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).

    Google Scholar 

  46. Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7, 000685 (2021).

    Google Scholar 

  47. Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).

    Google Scholar 

  48. Robertson, J. & Nash, J. H. E. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 4, e000206 (2018).

    Google Scholar 

  49. Tagg, K. A. et al. Azithromycin-resistant mph(A)-positive Salmonella enterica serovar Typhi in the United States. J. Glob. Antimicrob. Resist. 39, 69–72 (2024).

    Google Scholar 

  50. Li, C. et al. The spread of pESI-mediated extended-spectrum cephalosporin resistance in Salmonella serovars—Infantis, Senftenberg, and Alachua isolated from food animal sources in the United States. PLoS One 19, e0299354 (2024).

    Google Scholar 

  51. Webb, H. E. et al. Genome sequences of 18 Salmonella enterica serotype Hadar strains collected from patients in the United States. Microbiol. Resour. Announc. 11, e0052222 (2022).

    Google Scholar 

  52. Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Proc. Intern. AAAI Conf. Web Soc. Media 3, 361–362 (2009).

    Google Scholar 

  53. Wang, R. H. et al. PhageScope: a well-annotated bacteriophage database with automatic analyses and visualizations. Nucleic Acids Res 52, D756–D761 (2024).

    Google Scholar 

  54. Wishart, D. S. et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res 51, W443–W450 (2023).

    Google Scholar 

  55. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Google Scholar 

  56. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Google Scholar 

  57. Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Google Scholar 

  58. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 52, W78–W82 (2024).

    Google Scholar 

  59. Lanza, V. F., Baquero, F., De La Cruz, F. & Coque, T. M. AcCNET (Accessory Genome Constellation Network): comparative genomics software for accessory genome analysis using bipartite networks. Bioinformatics 33, 283–285 (2016).

    Google Scholar 

  60. Bergsma, W. A bias-correction for Cramér’s V and Tschuprow’s. T. J. Korean Stat. Soc. 42, 323–328 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge state and local public health departments and laboratories for isolation and sequencing of Hadar genomes included in this analysis. The authors thank FDA colleagues Olgica Ceric, Beilei Ge, Claudine Kabera, as well as University of Minnesota Professor Timothy Johnson, for their valuable expertise. This work was supported by the Centers for Disease Control and Prevention (Contract No. 75D30123P18303 to FdlC). This work was also supported by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 (PID2020-117923GB-I00 to FdlC and MPGB). The views expressed in this article are those of the authors and do not necessarily reflect the official policy of the Agencies within the U.S. Department of Health and Human Services (CDC, FDA) and the U.S. Department of Agriculture (FSIS, APHIS), or the U.S. Government. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Health and Human Services or the U.S. Department of Agriculture.

Author information

Author notes
  1. These authors contributed equally: Kaitlin A. Tagg, Arancha Peñil-Celis.

Authors and Affiliations

  1. Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, USA

    Kaitlin A. Tagg, Hattie E. Webb, G. Sean Stapleton, Zachary Ellison, Molly Leeper, Justin Y. Kim, Molly K. Steele, Colin Schwensohn, Joshua M. Brandenburg, Katharine Benedict & Jason P. Folster

  2. Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain

    Arancha Peñil-Celis, Santiago Redondo-Salvo, M. Pilar Garcillan-Barcia & Fernando de la Cruz

  3. Oak Ridge Institute for Science and Education, Oak Ridge, USA

    Zachary Ellison & Joshua M. Brandenburg

  4. ASRT, Inc, Smyrna, USA

    Justin Y. Kim

  5. Food Safety and Inspection Service, United States Department of Agriculture, Washington D.C, USA

    Mustafa Simmons, Glenn Tillman, Sheryl Shaw & Uday Dessai

  6. Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, USA

    Cong Li

  7. National Animal Health Laboratory Network, Animal and Plant Health Inspection Services, U.S. Department of Agriculture, Ames, USA

    Beth Harris

  8. National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, USA

    Brenda R. Morningstar-Shaw

  9. Colorado Department of Public Health and Environment, Glendale, USA

    Daniel Mallal & Shannon Matzinger

  10. Montana Public Health Laboratory, Helena, USA

    Kathy Manion

  11. Utah Public Health Laboratory, Taylorsville, USA

    John Hergert & Jennifer M. Wagner

Authors
  1. Kaitlin A. Tagg
    View author publications

    Search author on:PubMed Google Scholar

  2. Arancha Peñil-Celis
    View author publications

    Search author on:PubMed Google Scholar

  3. Hattie E. Webb
    View author publications

    Search author on:PubMed Google Scholar

  4. G. Sean Stapleton
    View author publications

    Search author on:PubMed Google Scholar

  5. Zachary Ellison
    View author publications

    Search author on:PubMed Google Scholar

  6. Molly Leeper
    View author publications

    Search author on:PubMed Google Scholar

  7. Justin Y. Kim
    View author publications

    Search author on:PubMed Google Scholar

  8. Mustafa Simmons
    View author publications

    Search author on:PubMed Google Scholar

  9. Glenn Tillman
    View author publications

    Search author on:PubMed Google Scholar

  10. Cong Li
    View author publications

    Search author on:PubMed Google Scholar

  11. Beth Harris
    View author publications

    Search author on:PubMed Google Scholar

  12. Brenda R. Morningstar-Shaw
    View author publications

    Search author on:PubMed Google Scholar

  13. Molly K. Steele
    View author publications

    Search author on:PubMed Google Scholar

  14. Daniel Mallal
    View author publications

    Search author on:PubMed Google Scholar

  15. Shannon Matzinger
    View author publications

    Search author on:PubMed Google Scholar

  16. Kathy Manion
    View author publications

    Search author on:PubMed Google Scholar

  17. John Hergert
    View author publications

    Search author on:PubMed Google Scholar

  18. Jennifer M. Wagner
    View author publications

    Search author on:PubMed Google Scholar

  19. Colin Schwensohn
    View author publications

    Search author on:PubMed Google Scholar

  20. Joshua M. Brandenburg
    View author publications

    Search author on:PubMed Google Scholar

  21. Sheryl Shaw
    View author publications

    Search author on:PubMed Google Scholar

  22. Katharine Benedict
    View author publications

    Search author on:PubMed Google Scholar

  23. Jason P. Folster
    View author publications

    Search author on:PubMed Google Scholar

  24. Uday Dessai
    View author publications

    Search author on:PubMed Google Scholar

  25. Santiago Redondo-Salvo
    View author publications

    Search author on:PubMed Google Scholar

  26. M. Pilar Garcillan-Barcia
    View author publications

    Search author on:PubMed Google Scholar

  27. Fernando de la Cruz
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.A.T., A.P.C., H.E.W., G.S.S., M.K.S., K.B., M.P.G.B. and F.dlC.–Conceptualization. K.A.T., A.P.C., H.E.W., G.S.S., Z.E., M.L., J.Y.K., M.S., C.L., B.H., B.R.M.S., D.M., S.M., K.M., J.H., J.M.W., J.M.B. and K.B.–Data collection. K.A.T., A.P.C., H.E.W., G.S.S., M.S., C.L., B.H., B.R.M.S., K.B. and U.D.–Data curation. K.A.T., A.P.C., H.E.W., M.K.S., S.R.S., M.P.G.B. and Fdl.C.–Methodology. K.A.T., A.P.C., H.E.W., M.K.S., S.R.S., and M.P.G.B.–Analysis. K.A.T., A.P.C., H.E.W., M.K.S., S.R.S., M.P.G.B. and Fdl.C.–Visualization. K.A.T., A.P.C., H.E.W., G.S.S., K.B., M.P.G.B. and Fdl.C.– Writing - original draft. K.A.T., A.P.C., H.E.W., G.S.S., Z.E., M.L., J.Y.K., M.S., G.T., C.L., B.H., B.R.M.S., M.K.S., D.M., S.M., K.M., J.H., J.M.W., C.S., J.M.B., S.S., K.B., J.P.F., U.D., S.R.S., M.P.G.B. and Fdl.C.–Writing - review and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Arancha Peñil-Celis or Hattie E. Webb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review File

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Reporting Summary

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagg, K.A., Peñil-Celis, A., Webb, H.E. et al. Pangenome dynamics and population structure of the zoonotic pathogen Salmonella enterica serotype Hadar. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68026-3

Download citation

  • Received: 24 January 2025

  • Accepted: 15 December 2025

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68026-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing